The role of consequentiality in the external validation of stated preference methods through public referenda

> Christian Vossler and Sharon Watson, University of Tennessee

 Not surprising: plenty of controversy surrounding the validity of surveys that elicit values for public goods.

External validity – traditional methods

- Very difficult to undertake tests in representative field settings
- The norm has been to use controlled laboratory experiments. Potential shortcomings have included:
 - Use of private goods.
 - If public good, "real" payment mechanism not incentive compatible.
 - Stated preference "treatment" is a purely hypothetical, inconsequential decision setting.
- □ Typical conclusion: (positive) elicitation bias.

External validity – emerging methods

□ Stated preference setting viewed as (possibly) consequential.

- □ Lab/framed field experiment settings:
 - Stated preference "treatment" is consequential with known or unknown probability: Carson, Groves and List (2006); Landry and List (AJAE, 2007); Vossler and Evans (JEEM, 2009)
 - SP treatment is *potentially* consequential: Vossler, Doyon and Rondeau (AEJ, forth.)
- □ Field survey setting:
 - SP treatment (advisory referendum) *is* consequential: Johnston (JEEM, 2006)
- Typical conclusion: conditional on (perceived) consequences, no elicitation bias.

This study

- In a representative field setting, we take advantage of a unique opportunity to compare surveys with a parallel, binding public referendum.
 - Voters **unaware** of upcoming referendum
 - Respondents free to form beliefs
- □ Examine the role of consequentiality.
- □ Preview of findings:
 - Evidence for those on either side of validity debate.
 - Failure to control for consequentiality leads to **negative** hypothetical bias and concerns over construct validity.

Some advantages of public referenda

- Similar elicitation format to one that is commonly used in surveys: "advisory" referendum.
- Unique opportunity to compare stated preferences with a parallel, naturally-occurring setting.
- Some public referenda involve environmental goods and binding financial commitments.

Incentive compatibility of (advisory) referenda

Sufficient conditions (Carson and Groves, 2007; Vossler, Doyon, <u>Rondeau</u>, *forthcoming*):

- (i) the participant cares about the outcome;
- (ii) the authority can enforce payment;
- (iii) the elicitation involves a yes or no vote on a single project; and
- (iv) the probability that the proposed project is implemented is monotonically increasing with the proportion of yes votes.
- The incentive compatibility of a binding referendum is well-known (Farquharson, 1969).

Study Design – Proposal

- November 2010 referendum in the Town of Middleborough, MA.
- Proposal to adopt provisions of MA Community Preservation Act, and authorize property tax increase to fund local public goods (open space; recreation; protect water supply).
- □ Similar referendum held in 2002, but did not pass.
- Proponents of proposal kept it quiet to avoid opposition!

Exogenous Treatments

- Survey wave 1 ("No Information"): no media coverage of referendum has taken place. 1250 surveys.
- Survey wave 2 ("Information"): light newspaper coverage, a few editorials, flyers. 750 surveys.
- □ Check on credibility of treatments: ask respondents via email.

Endogenous Treatments

Question used to elicit beliefs regarding policy consequences:

A8. To what extent do you believe that the indicated votes on the Proposal from you and other survey participants will be taken into consideration by policy makers?

Not taken 1 2 3 4 5 Definitely taken into account into account

Suggested by theory: "1" – "Inconsequential".
 Else – "Consequential"

Study Design - Implementation

- □ Maximize usable surveys
 - Sample frame: registered voters
 - Stratified random sampling
- □ Mail surveys, with Internet option
- □ "Dillman" method
- □ Received 508 returns from verified voters (35% RR)

Participant information and beliefs

- In "no information" treatment, 6% indicated knowledge of referendum.
- Distribution of consequentiality question responses:
 - 1 "Not taken into account": n=94 (19%)
 - 2 : n= 130 (27%)
 - 3 : n = 171 (35%)
 - 4 : n = 50 (10%)
 - 5 "Definitely taken into account": n = 40 (8%)

	Public Referendum		Advisory Survey, Full Sample	
	N	% Yes	N	% Yes
Overall	8,166	53.53	478	50.68 (2.29)
Precinct 1	2,153	59.78	85	63.29 (5.26)
Precinct 2	1,069	52.39	83	41.51** (5.44)
Precinct 3	1,492	47.19	98	38.01* (4.93)
Precinct 4	872	56.88	71	46.22* (5.96)
Precinct 5	1,426	53.65	74	54.78 (5.83)
Precinct 6	1,154	48.44	67	47.58 (6.15)

Table 1. Advisory Survey and Public Referendum Voting results

	Public Referendum		Advisory Survey,	
	N	% Yes	N	Wes
Overall	8,166	53.53	370	57.41 (2.57)
Precinct 1	2,153	59.78	67	66.15 (5.82)
Precinct 2	1,069	52.39	67	53.58 (6.14)
Precinct 3	1,492	47.19	68	46.91 (6.10)
Precinct 4	872	56.88	56	54.57 (6.71)
Precinct 5	1,426	53.65	61	62.39 (6.25)
Precinct 6	1,154	48.44	51	52.71 (7.06)

Table 1. Advisory Survey and Public Referendum Voting results

	Public Referendum		Advisory Survey,	
			Inconseque	ential Sample
	N	% Yes	N	% Yes
Overall	8,166	53.53	91	25.60** (4.60)
Precinct 1	2,153	59.78	11	33.30 (14.90)
Precinct 2	1,069	52.39	14	5.16** (6.13)
Precinct 3	1,492	47.19	24	13.44** (7.11)
Precinct 4	872	56.88	15	14.98** (9.54)
Precinct 5	1,426	53.65	12	36.38 (14.51)
Precinct 6	1,154	48.44	15	37.31 (12.93)

Table 1. Advisory Survey and Public Referendum Voting results

Analysis

□ Censored regression model of WTP (Cameron and James, 1987)

$$WTP_i^* = x_i \beta + \varepsilon_i$$

If vote "yes" to tax t_i , then $WTP_i \ge t_i$ Otherwise, if vote "no" $WTP_i < t_i$. Assume $\varepsilon_i \sim Normal(0, \sigma^2)$.

$$\ln L = \sum_{i=1}^{N} w_i \left\{ y_i \ln \left[1 - \Phi \left(\frac{t_i - \boldsymbol{x}_i \boldsymbol{\beta}}{\sigma} \right) \right] + (1 - y_i) \ln \left[\Phi \left(\frac{t_i - \boldsymbol{x}_i \boldsymbol{\beta}}{\sigma} \right) \right] \right\}.$$

 Table 2. Descriptive Statistics

Variable Name	Description	Sample Mean (Std. Dev.)
Tax	Estimated annual increase in the participant's property taxes, in \$	20.71 (12.94)
College	= 1 if participant has a college degree or higher	0.52 (0.50)
Income	Participant's household income, in \$1000s; the midpoint of the category chosen by the participant is used	85.69 (53.38)
Age	Participant's age, in years	58.63 (14.23)
Female	= 1 if participant is female	0.52 (0.50)
Environmental	= 1 if participant is currently a member of an environmental organization	0.14 (0.34)
Historical	= 1 if participant is currently a member of an historical society	0.11 (0.31)
Information	= 1 if participant is in the post-information survey sample	0.41 (0.49)
Internet	= 1 if participant completed the Internet version of the survey	0.10 (0.30)
Inconsequential	= 1 if participant indicated the survey would have no influence on policy	0.19 (0.40)

Note: Summary statistics are based on the entire sample of respondents verified to have voted in the election.

WTP Regressions: Model 1 (Full sample)

	Coefficient (std. err.)
College	7.20 (5.13)
Income	0.07 (0.05)
Age	0.25 (0.19)
Female	7.18 (4.82)
Environmental	19.43 (7.57)
Historical	3.77 (8.37)
Information	-1.53 (4.74)
Internet	3.81 (7.46)
Constant	-9.10 (14.26)
σ	35.27 (6.91)
Pseudo R ²	0.075
Log-L	-256.65
N	401

WTP Regressions: Model 2 (Full sample)

	Coefficient (std. err.)
College	11.84 (5.83)
Income	0.07 (0.05)
Age	0.37 (0.21)
Female	6.49 (5.03)
Environmental	24.44 (8.59)
Historical	3.21 (8.89)
Information	-2.76 (5.01)
Internet	-1.17 (7.92)
Inconsequential	-37.02 (10.32)
Constant	-11.28 (15.01)
σ	36.04 (7.47)
Pseudo R ²	0.131
Log-L	-241.19
N	401

WTP Regression: Model 3 (Consequential sample)

	Coefficient (std. err.)
College	10.56 (4.31)
Income	0.10 (0.04)
Age	0.35 (0.16)
Female	3.14 (3.79)
Environmental	19.22 (6.49)
Historical	5.28 (7.00)
Information	0.91 (3.79)
Internet	0.69 (5.90)
Constant	-13.72 (11.45)
σ	24.78 (4.33)
Pseudo R ²	0.134
Log-L	-192.19
N	326

WTP Regressions

	Mean WTP (std. err.)
Model 1 - Pooled	\$21.86 (2.35)
Model 2 – Inconsequential	-\$8.71 (8.58)
Model 2 – Consequential	\$28.31 (3.22)
Model 3 - Consequential	\$26.02 (2.18)

Robustness checks

Consequentiality definition.

- Comparison of votes: alternative groupings lead to statistical equivalence.
- WTP estimation: consequentiality level-specific regressions
- Finding: clear division between "inconsequential" group and everyone else.
- □ Sample self-selection.
 - Estimated two-equation models.
 - Insignificant correlation in underlying unobservables.

Discussion

- We have provided an arguably strong field validity test of stated preference surveys
- Main findings mirror those of more controlled external validity studies that control for consequentiality.
- Results suggest that conditioning on consequentiality can mitigate negative hypothetical bias as well as avoid misleading conclusions regarding construct validity.
- Unanswered research questions