

Paper Summary

- The distribution of yearly damages due to hurricanes in the US is 'fat-tailed.'
- The tail of the distribution is so 'fat' that the variance of damages, conditional on being in the tail, is potentially unbounded.

Most Damaging Hurricanes, 1900 – 2005 (Pielke et al. 2008)

Hurricane	Year	Normalized Damages
Greater Miami	1926	\$157 B
Katrina	2005	\$81 B
Galveston (1)	1900	\$78 B
Galveston (2)	1915	\$62 B
Andrew	1992	\$58 B
New England	1938	\$37 B

Power Law Distributions

Normal Distribution:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

Power Law Distribution:

$$f(x) = \frac{\zeta - 2}{(x_{min})^{\zeta}} (x)^{-(\zeta+1)}$$

Discovered Power Laws

- City Size
- Asset Market Movements
- Earthquakes (Richter Scale is a logarithmic scale)
- Hurricanes (Corral et al. 2010)
- Lots of others

Tail Effects (Nordhaus, 2012)

- For power law tails, conditional on being in the tail, the distribution of extreme events is wide.
 - Ex: Normal distribution 200 year event
 - Typical event is 12% larger than 200 year event
 - Ex: Power law distribution 200 year event
 - For earthquakes (ζ < 1), typical event is 1000% larger than 200 year event
 - 2011 Japanese earthquake biggest ever in Japan!

Interesting Facts About Power Laws

- Two parameters: ζ and x_{min}
- ζ determines all the moments of the distribution.
 - If ζ < 1, mean is divergent
 - If ζ < 2, variance is divergent
 - pattern holds for higher moments
- Smaller ζ means 'fatter' tail
- x_{min} determines where power law behavior begins

Question

- Do hurricane damages in US have a power law tail?
- If so, what is ζ ?
- Or is distribution
 - lognormal?
 - exponential?

Data

- Pielke et al. (2008) data set of normalized economic hurricane damages from 1900 – 2005
- Damages = direct losses determined immediately after hurricane
- Damages normalized to be estimated as if the (historical) hurricane made landfall under contemporary levels of societal development
 - Controls for inflation, wealth and population
- Damages aggregated by year, not hurricane

Descriptive Statistics

	N	Min	Max	Mean	Std. Dev.
PL05 Damage	106	0	161	10.3	23.2
CL05 Damage	106	0	144	10.1	21.8

Histograms – Untransformed Data

Histogram - Log(Damages) Scale

Histogram - Log-Log Scale

Power Law Estimation

• To estimate ζ , use Hill's MLE:

$$\hat{\zeta} = 2 + n \left[\sum_{i=1}^{n} \ln \left(\frac{x_i}{x_{min}} \right) \right]^{-1}$$

- To calculate x_{min} follow suggestions of Clauset, Shalizi & Newman (2009):
 - Estimate ζ for each possible x_{min} and find:

$$KS = \max_{x \ge x_{min}} |G(x) - P(x)|$$

— Choose x_{min} with smallest KS value.

Estimated Power Law Distributions

Variable	Coefficient	Estimate
PL	zeta	1.2185
	95% CI	0.9865, 1.4504
	xmin	12.9
CL	zeta	1.1408
	95% CI	0.9236, 1.3580
	xmin	11.7

Goodness of Fit Tests for Power Law Distribution (Clauset et al., 2009)

- 1. Generate many synthetic data sets from estimated PL distribution.
- 2. Re-estimate x_{min} and ζ for each synthetic data set.
- 3. Calculate a KS statistic for each synthetic data set by comparing to true distribution.
- 4. Count the proportion of times the original KS statistic exceeds the KS statistic from the synthetic data sets proportion is p-value.

K-S Tests of Distributions

Variable	Hypothesized	p-value	
	Distribution		
PL	Normal	0.000	
	Exponential	0.000	
	Log-Normal	0.799	
	Power Law	0.414	
CL	Normal	0.000	
	Exponential	0.000	
	Log-Normal	0.760	
	Power Law	0.156	

Future Work

- Likelihood ratio tests to directly compare goodness of fit.
 - Nested hypothesis tests for tail.

Conclusion

- Hurricane damages may follow a power law or a lognormal distribution.
- If power law, variance of damages is estimated to be unbounded.