
Agriculture and Deforestation

Ryan Abman, Teevrat Garg, Yao Pan and Saurabh Singhal∗

This Version: April 2, 2021

Abstract

Although improving agricultural productivity is vital to anti-poverty and food security
goals, its ecological effects are theoretically ambiguous. Increasing the relative value of
agricultural land may spur deforestation, but factor market constraints paired with im-
provements in existing land productivity may reduce the demand for shifting cultivation.
Leveraging the discontinuity in eligibility for a large agricultural extension program, we
find that the program reduced deforestation by 13%. The program increased adoption of
promoted practices such as manure-use and crop rotation resulting in higher productiv-
ity but no increase in cultivated area. Suitably designed programs improving agricultural
productivity may also enable conservation.
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1 Introduction

Improving agricultural productivity remains one of the central goals of policy makers and re-

searchers, not only to provide food security for a rising global population (Barrett, 2010; God-

fray et al., 2010) but also to reduce poverty, foster economic development and enable the struc-

tural transformation of developing countries (Bustos et al., 2016; Gollin et al., 2014; McArthur

and McCord, 2017). Such investments are increasingly made and warranted in regions with

the last remaining stands of tropical forests, generating concerns about the ecological ramifi-

cations of improvements in agricultural productivity (Burney et al., 2010; Green et al., 2005).

Although tropical deforestation is one of the most urgent global environmental concerns gen-

erating greenhouse gas emissions (IPCC, 2014; Jayachandran et al., 2017) and local health ex-

ternalities (Bauch et al., 2015; Garg, 2019; Masuda et al., 2019), our understanding of the rela-

tionship between agricultural productivity and tropical deforestation remains incomplete.

In theory, improvements in agricultural productivity can have ambiguous effects on defor-

estation. “Boserup’s hypothesis” suggests that improvements in land productivity would raise

the value of agricultural land and thereby increase pressure on clearing forests for expansion

of agriculture.1 Conversely, under factor market constraints common in developing countries,

improvements in productivity may instead spur intensification and spare land for nature, a no-

tion referred to as ”Borlaug’s hypothesis”. Investigating this empirical relationship is vital to

enable conservation, especially in the face of regulatory failure to curb deforestation (Burgess

et al., 2012).

We estimate this relationship in the context of a large-scale extension program aimed at

improving agricultural productivity in Uganda. Such programs are being increasingly used

around the developing world to improve agricultural yields.2 The program, implemented by

BRAC Uganda from 2008-2013, provided farmers with training on using new and improved

techniques as well as providing access to better seeds. Coinciding with this time period, be-
1A related and more general class of phenomena where improvements in productivity or efficiency increase

rather than reduce use is referred to as Jevon’s Paradox.
2From 2005 to 2016, developing countries received approximately 91.7 billion USD in agricultural aid (with 1.9

billion specifically in the form of agricultural inputs) from NGOs, multilateral organizations, private sector insti-
tutions, and various other channels (OECD, 2016). Between 2011 and 2014, at least 10 African countries had im-
plemented input subsidy programs to improve small-holder agriculture with annual spending ranging from 600
million to 1 billion USD (Jayne et al., 2018). The Food and Agriculture Organization of the United Nations allocated,
in the fiscal year 2018-2019 budget, allocated approximately $200 million (19.6% of it’s total budget) to making agri-
culture, forestry, and fisheries more productive and sustainable, this includes the target of doubling the agricultural
productivity and incomes of small-scale food producers by 2030 (UNFAO, 2019).
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tween 2001-2018, Uganda lost approximately 780,000 hectares of forest cover and 90% of this

loss is attributable to shifting smallholder cultivation (Curtis et al., 2018).

To understand the effect of improvements in agricultural productivity on deforestation, we

begin with a conceptual model on which we ground our empirical exercise. We adapt the

framework of Assunção et al. (2017); in our setting farmers choose between farming on exist-

ing land or clearing forests to make way for new agricultural land. The extension program

improves the productivity of all agricultural land but disproportionately so for land already

under cultivation. Under factor market constraints, improvements in productivity lead to in-

tensification, thereby decreasing pressure on clearing forests for agriculture. At the same time,

we assume farmers differ only in their outside, non-agricultural option and increases in agri-

cultural productivity induce more farmers to engage in agriculture thereby increasing pressure

on land clearing. The net effect is ambiguous.

For the subsequent empirical exercise, we leverage a discontinuity in village eligibility –

only villages within 6 kilometers of a BRAC Uganda office could participate – and find that

the program reduced annual deforestation by 13% in barely eligible villages relative to those

barely ineligible for the program. We find no discontinuity in baseline forest cover or in forest

loss prior to the program. Using household survey data, we report improvements in agricul-

tural productivity but no increases in area under cultivation. We find the primary margin of

adjustment is in the adoption of intensification technologies (e.g., manure-use, irrigation, inter-

cropping, crop rotation and weeding) but find no increased use of purchased inputs (such as

chemical fertilizers or improved seeds) nor in switching to perennial crops. While we find no

evidence to suggest that the conservation effects were reversed or mitigated after the end of the

program, research design limitations also prevent us from ruling out such effects. Under the

most conservative scenario that program effects were entirely reversed at the conclusion of the

program, the delay in forest loss provides 14% of the benefits of permanently avoiding forest

loss.

We join a long-standing literature on the potential trade-offs and synergies between eco-

nomic development and environmental conservation (Andreoni and Levinson, 2001; Antweiler

et al., 2001; Arrow et al., 1996; Dasgupta et al., 2002; Den Butter and Verbruggen, 1994; Gross-

man and Krueger, 1995; Stern, 2004; Stern et al., 1996).3 Within this literature, theoretical work
3On deforestation specifically, prior work has examined the effects of economic growth (Foster and Rosenzweig,
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on the relationship between agricultural productivity and deforestation provide models with

varying predictions rendering it largely an empirical question (Angelsen and Kaimowitz, 2001;

Balsdon, 2007; Goldstein et al., 2012; Green et al., 2005; Phalan et al., 2016; Takasaki, 2006). While

existing important and foundational empirical work examines this relationship between agri-

cultural productivity and deforestation/land use at a macro scale (Burney et al., 2010; Lambin

and Meyfroidt, 2011; Pelletier et al., 2020; Rudel et al., 2009; Stevenson et al., 2013), there is a no-

table dearth of well-identified empirical work at a subnational scale.4 An important exception is

(Assunção et al., 2017) who examine the impact of electrification in Brazil which improved the

productivity of farming relative cattle ranching and reduced forest loss. Causal identification

is complicated due to the non-random nature of variation in agricultural productivity, which

is often correlated with land characteristics or existing land-use. We overcome this challenge

by leveraging a spatial discontinuity in village-eligibility for a program aimed at improving

agricultural productivity. Importantly, extension programs designed to improve productivity

are ubiquitous thereby providing a potentially scalable policy that can deliver economic and

conservation benefits.

The rest of the paper is organized as follows. In Section 2 we provide background on the

BRAC extension program as well as the conceptual framework. Section 3 describes the data

while Section 4 details the research design. In Section 5 we discuss the results and in Section 6

we offer concluding remarks.

2 Background and Conceptual Framework

2.1 Deforestation in Uganda

Forest cover in Uganda has shrunk rapidly from 24% of total land area in 1990 to just 9% in

2015. Forest conservation in Uganda is uniquely challenging as a majority of the forested land is

privately owned (approximately 70%).5 Under the Land Act (Amendment) of 2010, private land

2003), transportation infrastructure (Asher et al., 2020), place-based economic policies (Garg and Shenoy, 2020) and
cash transfers (Alix-Garcia et al., 2013; Ferraro and Simorangkir, 2020; Wilebore et al., 2019).

4Relatedly, Abman and Carney (2020) use ethnic favoritism as an instrument for subsidized agricultural inputs
and find a resulting reduction in forest loss in Malawi. Caviglia-Harris (2018) and Koch et al. (2019) demonstrate
that conservation policies can induce agricultural intensification by limiting the ability to expand into natural lands,
however, the question of interest in this paper is whether productivity improvements increase or decrease forest
clearing.

5Forest tenure typically takes the form of freehold, leasehold, or mailo.
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owners are allowed to convert forest lands for agricultural and other development purposes.

Consequently, most of the deforestation in Uganda has occurred on private forest lands that

fall outside designated protected areas. It is estimated that between 1990 and 2015 almost half

of the private forested land was lost (Uganda Ministry of Water and Environment, 2017). The

main drivers of deforestation during this period have been conversion of land for agriculture

(Curtis et al., 2018).

2.2 The BRAC Uganda Extension Program

BRAC Uganda launched an agricultural extension program in 2008 with the objective of in-

creasing productivity of small, low-income female farmers through the adoption of modern

cultivation techniques. The program included two complementary arms. In the first, “model

farmers” were selected and trained in modern cultivation techniques such as crop rotation,

inter-cropping, manure, irrigation, weeding and pest control. They were then required to set

up a demonstration plot in their villages and pass on that training to others in the village. In

the second, Community Agriculture Promoters (CAP) were selected from the same villages

and provided subsidized high yielding variety (HYV) seeds (at approximately a 10% discount)

to sell in their villages. There were no restrictions on the selling price as the objectives were to

increase the availability of HYV seeds in the village and the entrepreneurial skills of the CAP.

In most cases, these seeds were sold at market prices.

A key feature of the agricultural extension program was that it was limited to villages lying

within an arbitrarily chosen distance of 6 km from each BRAC branch office.6 The program was

rolled out across 39 branches in 2008. Program activities were officially ceased in 2013, though

some branches participated in a staggered phaseout program.7 Pan et al. (2018) find that the

program was effective in increasing the adoption of modern cultivation techniques and inputs

that require minimal upfront monetary investment such as inter-cropping, crop rotation and

the use of manure, and significantly improved food security.
6BRAC chose the 6km limit in the pilot phase with the objective of balancing the need to reach as many villages as

possible and the transportation costs for BRAC trainers. This threshold selected for the pilot was later incorporated
arbitrarily into the agricultural extension program and implemented regardless of geography or population density.
In Appendix Figure A.1 we show that key geographic parameters such as elevation, distance to nearest road and
distance to nearest water source are continuous at the 6 km threshold.

7Unfortunately, the nature of the phaseout, the concurrent introduction of new agricultural programs and anec-
dotal evidence of post-program spillovers makes it difficult to estimate causal effects from the end of the program.
We discuss this in more detail in Section 5.2.
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2.3 Agriculture and Land-Use Change

Agricultural extension programs, when successful, can change agricultural practices such as

input use and adoption of crop rotation thereby improving agricultural productivity. The ef-

fects of such programs on deforestation, however, are theoretically ambiguous. By improving

the returns to agricultural land, extension programs can increase pressures on land clearing

by expanding agricultural land. On the other hand, if farmers are factor market constrained as

they commonly are in developing countries (Conning and Udry, 2007), then intensification of

agricultural production could alleviate pressures on clearing forest land for agriculture.8

We adapt Assunção et al. (2017) to build a simple model to understand how the extension

program could affect land-use change. We begin with an economy where there is a continuum

of agents who are identical in every regard except their outside non-agricultural options such

that changes in returns to the agricultural sector change the number of agents (n) who select

into farming. Farmers choosing to engage in agricultural livelihoods are faced with the deci-

sion to allocate their household labor between farming on existing agricultural land or on new

agricultural land derived by clearing forests. For simplicity, we limit household labor allocation

to farming on new or existing land. Reallocation of labor towards and away from agriculture

is captured instead by allowing number of farmers in the agricultural sector to vary. Let γ de-

note household labor allocated to farming in new land; we normalize total household labor to

1 and therefore labor allocated to farming in existing land is 1 − γ. The production functions

for new and existing land are f(·) and g(·) respectively, with usual properties of monotonicity

and concavity in inputs. Importantly, we assume that the extension program (Λ) improves the

productivity of all agricultural land but disproportionately so for existing land. That is,

∂g(l)

∂Λ
≥ ∂f(l)

∂Λ
≥ 0 ∀ l (1)

This is a reasonable assumption and one we can empirically validate. First, BRAC pro-

moted several practices that help conserve soil fertility such as inter-cropping and crop rota-

tion which improve the relative soil quality and hence productivity of existing land relative to

newly cleared land. Second, the overall objective of the program was to increase food security
8There can be other circumstances, such as inelastic demand for agricultural outputs, that may disincentivize

extensification when land productivity increases. For the sake of simplicity, we highlight factor market constraints
that are rather ubiquitous in developing countries.
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by improving land productivity across the board. Indeed, in the empirical section that follows,

we find that the program increased adoption of soil conservation techniques and productivity

enhancing technologies.

Finally, we assume that farmers are factor market constrained and are unable to hire labor

beyond household labor, a reasonable assumption in our context (Conning and Udry, 2007). We

denote n∗ as the total number of farming units (individuals or households) engaging in agri-

culture in equilibrium for whom the returns in the agricultural sector exceed their individual-

specific outside option. Total deforestation (D∗) in equilibrium is given by new land cleared for

agriculture. For simplicity, we assume a linear function:

D∗ = n∗ · γ∗ (2)

Differentiating equation (2) with respect to the program Λ, we get

∂D∗

∂Λ
= n∗

∂γ∗

∂Λ︸ ︷︷ ︸
≤ 0

+ γ∗
∂n∗

∂Λ︸ ︷︷ ︸
≥ 0

(3)

Equation (3) shows that the effect of the program on deforestation is ambiguous. It is de-

composed into two terms. The first term is the effect of the program on the share of labor each

farmer allocates to new land versus existing land. This is the intensive margin effect and is

unambiguously negative. This follows from Equation (1) and the assumption on factor market

constraints. Since the program makes existing land more valuable and farmers are constrained

in labor inputs, they reallocate labor from new land to existing land reducing demand for new

land. The second term is the effect of the program on the number of farmers in agriculture.

This is the extensive margin effect and is unambiguously positive. Since all agricultural land

becomes more productive with the program, agricultural returns increase and more agents

choose to farm. The net effect of these two countervailing forces is ambiguous and we test this

effect in the empirical exercise that follows.
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3 Data

In the absence of detailed, spatially explicit official records of forest cover and deforestation,

we rely on standardized, publicly available, high-resolution time series of forest cover. Our pri-

mary analysis employs a commonly-used product, Global Forest Change (GFC) that provides

baseline forest cover in 2000 and year-to-year forest loss at the 30 meter resolution derived from

Landsat imagery (Hansen et al., 2013). The high resolution of GFC is ideal for our research de-

sign that relies on a spatial discontinuity at the 6 km point and in this context is preferable to

lower resolution products such as Vegetation Continuous Fields (VCF) used in other contexts

(Asher et al., 2020). However, one disadvantage of GFC is that it only tracks forest loss but not

forest gain rendering it less than ideal in contexts where forest cover is increasing over time.

However, our period of study saw large scale declines in forest cover in Uganda, allowing us to

capture overall forest cover change suitably through GFC.

We obtain data on village locations from the Uganda Bureau of Statistics (2012). These

data provide the latitude and longitude coordinates for over 5,500 villages across Uganda.9 We

keep all unique villages that lie within 12 km of a BRAC center that have some forest cover

at baseline. This results in a sample of 807 villages. We attribute forest data pixels to villages

if they lie with 400 meters of the village latitude and longitude coordinates. We choose 400

meters as our primary specification because that is the median household distance to village

center in our household survey data described below and we report estimates using varying

village radii in the appendix.

We calculate average baseline forest cover by averaging year 2000 forest cover percent over

all village pixels. To obtain our measures of forest loss, we fit a two-way fixed effects model

(using village and year fixed effects) to the inverse hyperbolic sine of the count of pixels reported

as deforested in a given year. We average the residuals from this model for each village across

the pre-program period (2001 - 2007) and the period in which the program operated (2008 -

2012). These residualized forest loss measures are the primary outcomes used in the regression

discontinuity estimation.
9According to reports from the Ugandan Electoral Commission (2015), these data only cover a subsample of all

Ugandan villages. Furthermore, these data offer no additional information on villages (such as population, poverty
levels etc.), so we are unable to account for any such factors in our analysis. However, in the regression discontinuity
design we employ, interpreting our estimates as casual requires only that these indicators be continuous at the 6 km
threshold from BRAC Uganda centers.
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In order to investigate the mechanisms underlying the effects on deforestation at the household-

level, we also use data from BRAC’s agricultural survey, conducted in 2011. The survey em-

ployed a two-stage cluster sampling process. First, for each of the 39 branches that rolled out the

program in 2008, 17 villages were randomly picked from the list of villages around the branch.

Next, in each of the selected villages, 25 households were randomly chosen for the survey. After

cleaning the GPS coordinates and restricting the sample to villages within a radius of 12 km of

a branch we get a sample of 7,781 households residing in 451 villages. The survey successfully

collected demographic information and detailed agricultural practices records for the last two

cropping seasons (July 2010 - June 2011).

4 Research Design

We estimate the impact of access to the agricultural extension program on forest loss using a

regression discontinuity (RD) design. The program was designed to reach all villages within

a 6 km radius from a BRAC Uganda Office. We estimate the intent-to-treat (ITT) effects using

the non-parametric approach following Hahn et al. (2001).10 We use local linear regressions to

estimate the left and right limits of the discontinuity, and the difference between the two is the

estimated ITT effect. Thus, the ITT effect can be identified as:

β = limz↑0E[Y |zi = z]− limz↓0E[Y |zi = z] (4)

where the running variable, zi, is defined as distance of the village (in meters) from the cutoff

point of 6 km, which is normalized to zero, and z ≤ 0 implies that the village had access to the

program. As the choice of the bandwidth can play an important role in regression discontinuity

estimates, we test the sensitivity of the RD estimates of each of our main outcome variables to

various bandwidth choices including the optimal bandwidth as proposed by Calonico et al.

(2014). However, the optimal bandwidth differs by outcomes; therefore, we choose a 2 km

bandwidth for our preferred specification to ensure consistent samples across outcomes in our
10Unfortunately, we do not have administrative data on village-level treatment designation, and thereby are un-

able to employ a fuzzy discontinuity design. However, Pan et al. (2018) and Pan and Singhal (2019) use data from
a household survey conducted three years after the inception of the program and find a spatial discontinuity in
program coverage in villages sampled.
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analysis. We use a triangular kernel to give higher weights to points nearer to the discontinuity

threshold (Imbens and Lemieux, 2008). We cluster our standard errors at the BRAC branch

level.

Our primary outcome of interest is forest loss. Since forest loss can be zero in a village in

a given year, we use an inverse hyperbolic sine transformation of forest loss, residualized us-

ing two-way village and year fixed effects. The use of satellite-based measures of forest cover

allows us to also test for the presence of a discontinuity on baseline forest cover (available for

the year 2000) and pre-program forest loss (2001-2007) in order to support our research design.

The identifying assumption behind the spatial regression discontinuity model is that the eligi-

bility distance was not chosen to coincide with other, unobserved factors that may also drive

deforestation. Significant differences in baseline forest cover inside compared to outside the

eligibility boundary or pre-program differences in forest loss in eligible vs ineligible villages

prior to the start of the program may indicate previous forest-clearing activity led to the choice

of 6 km for program eligibility. We provide evidence in support of our identifying assumptions

finding no changes in baseline forest cover or pre-program forest loss at the 6 km boundary. In

the appendix, we provide evidence of continuity in geographic characteristics.11 We also verify

that there is no difference in village density at the eligibility boundary using the method pro-

posed by Cattaneo et al. (2019) and Cattaneo et al. (2018). We fail to reject the null hypothesis

of no difference in village density at the boundary (p-value= 0.46).

To uncover the mechanisms through which the program affects forest loss, we compliment

our village-level forest outcome results with similar regression discontinuity models on the

household survey data. As distance from village centers to the nearest BRAC branch was not

directly reported, we computed each household’s distance from the nearest BRAC branch using

its GPS coordinates and then used the median household’s distance as a proxy for the distance

of the village from the nearest BRAC branch (Pan and Singhal, 2019; Pan et al., 2018). For compa-

rability, we use the 2 km bandwidth for our preferred specification with results from alternative

bandwidths relegated to the appendix. As in the case of the specifications on forest cover, we

cluster standard errors at BRAC branch level.
11In Figure A.1, we show continuity at the eligibility boundary for distance to nearest road, distance to nearest

lake or river, and elevation.
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5 Results

We report three principal findings. First, the program reduced forest loss in treatment relative

to control villages by 13%. Second, the evidence is consistent with an increase in intensification

through changes in inputs (e.g., manure use and irrigation) as well as changes in cultivation

practices (e.g., intercropping and crop rotation). Finally, we find that revenue and profits per

acre increased with no changes in total land area under cultivation.

We begin with visual evidence of the impact of access to the agricultural extension pro-

gram on deforestation. Figures 3a and 3b present average residuals of village-level forest loss

by distance to the 6 km eligibility boundary for the treatment period and pre-treatment period

respectively. Negative values on the running variable (left-hand side of zero) indicate that a vil-

lage lies within the eligibility cutoff. We overlay local linear regression lines and 95% confidence

intervals, estimated separately for each side of the boundary. In the treatment period, we see

average residuals systematically trending downward as the distance approaches the boundary

for eligible villages while average residuals stay near zero for untreated villages. This figure

presents the main finding of this paper, notably that annual forest loss was reduced in eligible

villages during the treatment period.

Figure 3b presents the same relationships using the average residuals over the pre-treatment

period. Unlike in 3a, there is no notable difference in the regression lines to the left and right of

the eligibility boundary. The absence of any systematic relationship at the boundary provides

important validation of our underlying regression discontinuity assumptions. If our main find-

ings were driven by underlying differences in technology, agricultural practices, or other unob-

servable factors that may also influence annual forest loss, we would expect to see differences in

forest loss at the boundary prior to the treatment period. Furthermore, we find no differences

in baseline forest cover (Figure 3c) or village density (Figure 3d) at the eligibility boundary

(Cattaneo et al., 2018, 2019).

We present corresponding estimates in Table 1. The first panel presents our RD estimates

for residualized inverse hyperbolic sine of annual forest loss for the treatment period. Our es-

timates indicate program eligibility reduced annual forest loss by 12 - 13 percent during the

program period. Our estimates are similar in magnitude and precision across various band-

width choices including the optimal bandwidth as proposed by Calonico et al. (2014).
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The second and third panels of Table 1 present our RD estimates for residualized inverse

hyperbolic sine of annual forest loss prior to the treatment program as well as percentage of

baseline (year 2000) forest cover. Our coefficient estimates are consistent with the visual evi-

dence discussed above. Across all bandwidths, we find no evidence of significant differences

in annual forest loss prior to the extension program and baseline forest cover is nearly identical

in villages on either side of the eligibility boundary at baseline. The coefficients in each case

are small and statistically insignificant.

We undertake several robustness checks to confirm that our estimates are not sensitive to

the specification choices and present these in the appendix of this paper. We vary the radius

used to attribute spatial forest data to the village and find statistically significant results for

200 meter to 600 meter radii and consistent magnitudes but larger standard errors with an 800

meter radius (Appendix Table A.1). We also estimate a variety of placebo boundaries, finding

the 6 km to be unique in both magnitude and significance (Appendix Table A.2).

5.1 Mechanisms

In this section, we investigate the mechanisms through which the program increased agricul-

tural productivity and reduced forest loss. In Table 2 we test the effect of the program on

promoted agricultural practices that are consistent with sustaining soil nutrients and/or in-

tensification investments.12 We use indicators of whether a household practices a particular

agricultural technique and estimate the regression discontinuity model on those practices as

a function of village location. Consistent with Pan et al. (2018), we find significant increases

in manure use (Column 1: 9.8 percentage points), intercropping (Column 2: 5.9 percentage

points), and crop rotation (Column 3: 7.4 percentage points) for households in villages eligible

for the program. These practices all address the issue of nutrient depletion in the soil on ex-

isting agricultural land that encourages farmers to shift agriculture to new land. We also find

increases in irrigation (Column 4: 3.3 percentage points) , another practice intended to increase

productivity of existing agricultural land. We find no evidence of increases in use of chemical

fertilizer (Column 5), pesticides (Column 6) or high-yielding varieties of seeds (Column 7).13

12As we do not have plot level information on the use of agricultural practices, we are estimating the combined
effects of agricultural intensification and extensification. However, since we do not find any evidence of extensifi-
cation (Table 3), we believe that changes in these practices reflect agricultural intensification.

13These estimates are also robust to choice of bandwidth (Appendix Table A.6).
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These changes in practices correspond with 32.5% increase in revenue per acre (Table 3,

Column 1). Under the reasonable assumption that prices do not change discontinuously at the

6 km threshold, revenue per acre serves as a reasonable proxy for yields, implying that the

program did improve agricultural productivity. We find no evidence that program eligibility

led to an increase in area under cultivation (Table 3, Column 2) suggesting that factor market

constraints bind the expansion of overall agricultural land. Additionally, we find no evidence

of an increase in participation in agriculture at either the individual or household level (Table

3, Columns 3-4) implying that the effect of the program on land-use change at the extensive

margin was largely muted.

We consider two alternative mechanisms – reduced demand for fuel wood and adoption of

perennial crops – that could explain the forest conserving effect of the agricultural program. In

both cases, we find evidence inconsistent with these mechanisms.

First, positive income effects from the program (Pan and Singhal, 2019; Pan et al., 2018), may

induce households to move up the “energy ladder”, switching fuel use away from firewood

(Hanna and Oliva, 2015). Indeed, local demand for firewood and charcoal is an important,

although not the dominant factor underlying deforestation in Uganda (Curtis et al., 2018). We

test whether changes in firewood use, as opposed to agricultural practices, may be driving the

effect of the program on reductions in forest loss we consider indicators of firewood use for light

and for cooking in the household. We find no differences in these extensive margin measures

of firewood use. As shown in Appendix Table A.7, the coefficients are negligible in magnitude

and are statistically insignificant.14

Second, the BRAC program may have induced adoption of perennial crops thereby reducing

the need to leave land fallow and shift cultivation to forested land. We test for this possibility by

constructing an indicator variable that takes the value 1 if the household grows any perennial

crops and 0 otherwise. We find no evidence that the program induced the take-up on perennial

as opposed to seasonal crops (Table 2, column 8).
14Unfortunately, the household survey does not include any questions that allow us to examine the intensive

margin of firewood use. The survey asks about the total value of all fuel used, but it does not separate firewood
from other forms of fuel.
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5.2 Delayed or avoided deforestation?

Some elements of the BRAC Uganda extension program were transitory in their nature (provi-

sion of BRAC HYV seeds) while other elements may have more persistent effects (agricultural

training modules). Whether the ecological benefits found in this paper should persist beyond

the end of the program is an open, empirical question. Although our forest loss data extend

past 2013, the setting makes it difficult to test this for a number of reasons. First, although the

program ended in 2013, a number of BRAC branches participated in a phase-out program - con-

tinuing some program features beyond the end date. Second, in correspondence with BRAC

officials, we learned that upon the conclusion of the program under study, BRAC did launch

new agricultural outreach programs that did not utilize the same 6 km bandwidth. The follow-

up program may have sought to include villages on the other side of the original eligibility

boundary that did not previously have access to these services. Lastly, diffusion of the tech-

niques to originally ineligible villages overtime could lead to underestimates of the persistence

of program effects measured at the original eligibility boundary.

With these caveats in mind, we estimate the effect of program treatment on residualized

village-level forest loss post-2013 (Appendix Table A.8). We limit the sample to villages near

branches that did not participate in the phaseout (222 villages within the 2 km bandwidth).

While we do not find continued reduction in annual forest loss at the eligibility boundary, the

magnitude of the estimates suggests that previous reductions were, at a minimum, not offset

at the end of the program. We note that the lack of precision in our estimates and lack of

household data after 2013 limit the conclusions that can be drawn from this analysis.

Even if the reductions in forest loss found from the program are not permanent, there are

still sizeable economic benefits from delaying deforestation. To illustrate, under the conserva-

tive scenario that forest loss was merely postponed by 5 years and subsequently undone, the

present value of this delay in associated CO2 emissions, under a time discount rate of 3 per-

cent, is approximately 14 percent of the benefits of permanently avoiding the forest loss. This

scenario of a 5-year delay would arise if our estimates on post-program forest loss (presented

in Appendix Table A.8) were positive and of the same magnitude as the estimates in our main

findings. Thus, forest not cleared in 2008 would be cleared in 2013, forest not cleared in 2009

would be cleared in 2014, etc. As the post program estimates are smaller in magnitude and
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not statistically distinguishable from zero, we believe this to be overly conservative with the

realized environmental benefits in excess of 14 percent of those associated with permanently

avoided deforestation.

6 Conclusion

In this paper we provide evidence that improvements in agricultural productivity may also

have ecological benefits via reduced pressure to expand into forest lands. Although improve-

ments in agricultural productivity have the potential to increase the relative value of land in

agriculture to standing forest, the presence of factor market constraints may lead farmers to

continue to work on cleared land rather than clear and shift cultivation so long as soil produc-

tivity can be sustained. Empirically, we demonstrate a significant reduction in annual forest loss

for villages eligible for the extension program during the program period that is not explained

by earlier differences in forest loss nor differences in baseline forest cover. Households in eligi-

ble villages practice more techniques associated with nutrient preservation and intensification

and earn greater profits per acre of land cultivated.

While these findings are optimistic for achievement of the dual objectives underlying sus-

tainable development, there are two caveats that warrant discussion and may offer areas for

future research. First, it is not clear if reductions in forest loss would occur under a similar pro-

gram in a location with fewer labor market constraints. If households could easily hire labor,

improvements in agricultural productivity may encourage both intensification and extensifica-

tion leading to increased forest loss. Without spatial variation in labor market constraints in

our setting, we are unable to test this hypothesis. Second, the improvements in agricultural

income could lead to certain general equilibrium effects that we are not able to capture in our

regression discontinuity approach. Improving household incomes via improved yields might

stimulate local demand for land-intensive goods leading to a higher rate of forest loss. While

some insights on these effects can be gleaned from the literature on cash transfers and forest

loss (Alix-Garcia et al., 2013; Ferraro and Simorangkir, 2020; Wilebore et al., 2019), findings in

this literature tend to vary by setting and program.

Our research underscores the importance of evaluating ecological outcomes in the context

of interventions aimed at improving agricultural productivity. Many of these interventions,
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including the one we evaluate here, can potentially be scaled up to deliver to “win-win” sce-

narios. Future research on these issues will be important to help craft agricultural interventions

that also conserve nature.
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Figures

Figure 1: Global forest loss by dominant cause

Notes: This figure shows the dominant driver of forest loss in each 10 km X 10 km grid cell globally. The dominant
driver of forest loss in Uganda, our country of study, is shifting agriculture. Data are obtained from Curtis et al.
(2018).

Figure 2: Brac branch locations in Uganda

Notes: This figure shows the location of the Brac branches (red dots), the 12 km buffers covering the villages used
in the analysis, as well as the baseline forest cover percentage (shade of green).
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Figure 3: Regression discontinuity plots
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Notes: This figure presents the distribution of outcomes of interest plotted against the running variable of distance
to the 6 km eligibility boundary in meters. Panel (a) plots average residuals from a two-way fixed-effects model of
the inverse hyperbolic sine transformation of annual forest loss during the program period (2008 - 2012) and panel
(b) plots these same average residuals for the pre-program period (2001 - 2007). Panel (c) plots average baseline
(year 2000) forest cover and panel (d) plots the density test from Cattaneo et al. (2019). Plots (a) - (c) are constructed
according to Calonico et al. (2015) using a fourth-order polynomial for fit.
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Tables

Table 1: Regression discontinuity estimates of program eligibility on village-level forest out-
comes

Bandwidth: 2 km CCT 1.5 km 2.5 km 3 km
(1) (2) (3) (4) (5)

Forest Loss (IHS)

Program Eligible -0.133* -0.133* -0.123 -0.128** -0.126**
(0.0685) (0.0688) (0.0792) (0.0602) (0.0556)

Mean loss in control (ha/yr) 0.0678 0.0682 0.0629 0.0674 0.0645
Obs 308 306 223 390 447

Pre-treatment Forest Loss (IHS)

Program Eligible 0.0396 0.0335 0.0555 0.0300 0.0228
(0.0689) (0.0631) (0.0825) (0.0601) (0.0548)

Mean loss in control (ha/yr) 0.0578 0.0565 0.0512 0.0540 0.0565
Obs 308 354 223 390 447

Year 2000 Treecover (%)

Program Eligible -0.314 -0.147 -0.908 -0.135 -0.301
(3.800) (3.692) (4.003) (3.706) (3.607)

Control Average (%) 31.70 32.38 31.96 32.22 32.38
Obs 308 379 223 390 447

Notes: Presented are non-parametric regression discontinuity estimates of program eligibility across different band-
widths. The top panel presents estimates on average residualized inverse hyperbolic sine of annual forest loss during
the program. The middle panel presents estimates on the average residualized inverse hyperbolic sine of annual for-
est loss prior to the program and the final panel presents estimates on percent forest cover at baseline. CCT refers
to the optimal bandwidth as proposed by Calonico et al. (2014). Standard errors are clustered by BRAC branch.
Statistical significance denoted as follows: *** p<0.01, ** p<0.05, * p<0.1
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Table 2: Regression discontinuity estimates of program eligibility on household-level agricul-
tural practices

(1) (2) (3) (4) (5) (6) (7) (8)
Outcome Manure Intercrop Crop Irrigation Weeding Fertilizer HYV Perennial

Use Rotation Use Seeds crops

Program Eligible 0.0977*** 0.0590* 0.0737*** 0.0326*** 0.0644** -0.0171 -0.0440 -0.0264
(0.0249) (0.0308) (0.0251) (0.00829) (0.0310) (0.0161) (0.0323) (0.0351)

Obs 2912 2912 2912 2912 2912 2912 2912 2912
Control mean 0.0731 0.796 0.797 0.0266 0.693 0.0725 0.356 0.351

Notes: Presented are regression discontinuity estimates of program eligibility on the adoption of agricultural prac-
tices. Outcomes are indicator variables taking value of 1 if the household reports engaging in the particular activity
or using the particular input. Columns (1) - (8) correspond to using manure, practicing intercropping, practicing
crop rotation, using irrigation, practicing weeding, using purchased chemical fertilizer, using high yield variety
seeds and growing perennial crops, respectively. All models are estimated using the 2 km bandwidth, with branch
fixed effects and clustered standard errors at the branch level. Statistical significance denoted as follows: *** p<0.01,
** p<0.05, *p<0.1. Despite the different bandwidth choice and regression specification, these results are qualita-
tively similar to those reported in Pan et al. (2018), Table 3.
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Table 3: Regression discontinuity estimates of program eligibility on agricultural incomes, land
in cultivation, and agricultural engagement

(1) (2) (3) (4)
Outcome Revenue IHS Cultiv. Engage in Engage in

per acre ag area ag (All) ag (Any)

Program Eligible 0.325* 0.0262 -0.0252 -0.0244
(0.189) (0.0514) (0.0376) (0.0340)

Obs 2843 2907 15186 3235
Control mean 11.59 1.414 0.666 0.686

Notes: Presented are regression discontinuity estimates of program eligibility on household agricultural outcomes.
Columns (1) uses the inverse hyperbolic sine of revenue per acre as the outcome variable. Column (2) estimates the
effect of program eligibility on the inverse hyperbolic sine of cultivated area. The mean of cultivated agricultural
area is in acres. Columns (3) and (4) use indicators for whether someone reported working on household plots over
the past 7 days. Column (3) uses all individuals (aged 5 and above) sampled while Column (4) uses household-level
indicators taking a value of 1 if anyone in the household reports working in agriculture. All models are estimated
using the 2 km bandwidth, with branch fixed effects and clustered standard errors at the branch level. Statistical
significance denoted as follows: *** p<0.01, ** p<0.05, *p<0.1.
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A Appendix - Additional Tables and Figures

Figure A.1: Geographic continuity by village distance

(a) Elevation (meters)
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Notes: This figure presents the distribution of geographic characteristics at village locations plotted against the
running variable of distance to the 6 km eligibility boundary in meters. Panel (a) plots average village elevation in
meters, panel (b) plots average distance to nearest road in meters, and panel (c) plots average distance to nearest
water body (river or lake) in meters.
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Table A.1: Estimates varying village radius

(1) (2) (3) (4)

Program Eligible -0.0586 -0.133* -0.158* -0.137
(0.0369) (0.0685) (0.0953) (0.106)

Village Radius (m) 200 400 600 800
Mean loss in control (ha/yr) 0.0181 0.0678 0.148 0.279
Obs 308 308 308 308

Notes: This table presents estimates of our main result while varying the radius used to relate forest loss data
to village coordinates. Column (2) presents estimates using the 400 meter radius in our main specification while
column (1) uses a shorter 200 meter radius and columns (3) and (4) use 600 and 800 meter radii, respectively. All
models use a bandwidth of 2 KM. Standard errors are clustered at the BRAC branch level. Statistical significance
denoted as follows: *** p<0.01, ** p<0.05, * p<0.1
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Table A.2: Placebo eligibility boundary test

(1) (2) (3) (4) (5) (6) (7)

Program Eligible 0.0852 0.112 0.0554 -0.133* -0.00420 -0.0862 0.0924
(0.0834) (0.0766) (0.0758) (0.0685) (0.0673) (0.0684) (0.0627)

Placebo Dist (km) 4.5 5 5.5 6 6.5 7 7.5
Mean loss in control (HA) 0.0678 0.0441 0.0629 0.0678 0.0674 0.0645 0.0647
Obs 229 269 282 308 331 340 359

Notes: The outcome variable is the average residualized inverse hyperbolic sine of annual forest loss during the
program. This table presents placebo tests varying the radius of the cutoff for the regression discontinuity. The
actual eligibility distance was 6 km, which corresponds to Column (4). Other columns estimate placebo models by
moving the estimated eligibility thresholds by 500 meters towards or away from the BRAC center. All models are
estimated using the 2 km bandwidth.Standard errors are clustered at the BRAC branch level. Statistical significance
denoted as follows: *** p<0.01, ** p<0.05, * p<0.1

iii



Table A.3: Regression discontinuity estimates by land suitable for Coffee

(1) (2) (3)
Full Sample Above Median Below Median

Program Eligible -0.133* -0.120 -0.125
(0.0685) (0.0901) (0.0960)

Mean loss in control (ha/yr) 0.0678 0.0765 0.0594
Obs 308 162 146

Notes: Presented are non-parametric regression discontinuity estimates of program eligibility on residualized forest
loss. The first column includes villages for all Brac branch locations. The second column limits the sample to villages
near Brac branch locations more suitability for coffee and the third column limits the sample to villages near Brac
branch locations that are less suitable for coffee. More vs less suitable is determined by being above or below the
median. Standard errors are clustered at the BRAC branch level. Statistical significance denoted as follows: ***
p<0.01, ** p<0.05, * p<0.1

iv



Table A.4: Regression discontinuity sensitivity to omitting rainfall abnormalities

(1) (2) (3)
Full Sample Excl. Drought Excl. Low Rainfall

Program Eligible -0.133* -0.153** -0.159**
(0.0683) (0.0715) (0.0783)

Obs 1,540 1,408 1,254
Notes: Presented are non-parametric regression discontinuity estimates of program eligibility on annual residual-
ized forest loss. Residuals are not averaged prior to estimating the discontunity, thus leaving us with village-by-year
observations (instead of village averages). The first column includes villages-year observations with a bandwidth
of 2 km and is analogous to our main result. We calculate annual rainfall anomalies for all 12 km buffers around
Brac branch locations for 2000 - 2018 and classify drought years as those in which annual rainfall was 1.5 standard
deviations below the local average and low rainfall years as those in which annual rainfall was 1 standard deviation
below the local mean. We estimate our main effect omitting village-year observations with droughts (column 2) and
omitting village-year observations with low rainfall (column 3). Standard errors are clustered at the BRAC branch
level. The use of annual observations allows for standard clustering rather than nearest-neighbor clustering as in
the pooled regressions. Statistical significance denoted as follows: *** p<0.01, ** p<0.05, * p<0.1
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Table A.5: Cultivated land area as a function of household size

(1) (2) (3) (4)
First Quartile Second Quartile Third Quartile Fourth Quartile
(1-4 members) (5-6 members) (7-8 members) (9+ members)

Program Eligible 0.0129 0.0419 0.00328 0.275***
(0.0826) (0.0956) (0.0634) (0.0713)

Obs 805 877 640 585
Control mean 1.350 1.370 1.474 1.500

Notes: Presented are regression discontinuity estimates of program eligibility on the inverse hyperbolic sine of
area cultivated. The full estimation sample is split by quartiles of household size with Column (1) representing the
smallest quartile of household sizes and Column (4) the largest. All models are estimated using the 2 km bandwidth,
with branch fixed effects and clustered standard errors at the branch level. Statistical significance denoted as follows:
*** p<0.01, ** p<0.05, * p<0.1
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Table A.6: Regression discontinuity estimates of agricultural practices across multiple band-
widths

Bandwidth: 2KM CCT 1.5KM 2.5KM 3KM
(1) (2) (3) (4) (5)

Manure Use

Program Eligible 0.0977*** 0.109*** 0.111*** 0.0846*** 0.0726***
(0.0249) (0.0234) (0.0232) (0.0235) (0.0207)

Obs 2912 2329 2231 3388 4054

Intercropping

Program Eligible 0.0590* 0.108*** 0.0814** 0.0519* 0.0565**
(0.0308) (0.0395) (0.0349) (0.0269) (0.0231)

Obs 2912 1561 2231 3388 4054

Crop Rotation

Program Eligible 0.0737*** 0.0708** 0.0703** 0.0776*** 0.0771***
(0.0251) (0.0286) (0.0283) (0.0239) (0.0237)

Obs 2912 2126 2231 3388 4054

Irrigation

Program Eligible 0.0326*** 0.0238*** 0.0335*** 0.0318*** 0.0325***
(0.00829) (0.00805) (0.00736) (0.0101) (0.0107)

Obs 2912 1091 2231 3388 4054

Weeding

Program Eligible 0.0644** 0.0692* 0.0682* 0.0659** 0.0635**
(0.0310) (0.0366) (0.0378) (0.0278) (0.0258)

Obs 2912 2287 2231 3388 4054

Chemical Fertilizer Use

Program Eligible -0.0172 -0.0187 -0.0236 -0.0191 -0.0192
(0.0161) (0.0165) (0.0144) (0.0165) (0.0160)

Obs 2912 3367 2231 3388 4054

HYV Seeds Use

Program Eligible -0.0441 -0.0466 -0.0433 -0.0322 -0.0236
(0.0323) (0.0336) (0.0347) (0.0311) (0.0294)

Obs 2912 2749 2231 3388 4054

Perennial Crops

Program Eligible -0.0264 -0.0278 -0.0292 -0.0299 -0.0199
(0.0351) (0.0346) (0.0415) (0.0314) (0.0275)

Obs 2912 3076 2231 3388 4054

Notes: This table presents household level non-parametric RD estimates for each of agricultural practices reported
in Table 2. CCT refers to the optimal bandwidth as proposed by Calonico et al. (2014). We include BRAC branch
fixed effects and cluster standard errors at the BRAC branch level. Statistical significance denoted as follows: ***
p<0.01, ** p<0.05, * p<0.1
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Table A.7: Regression discontinuity estimates of household firewood use across multiple band-
widths

Bandwidth: 2KM CCT 1.5KM 2.5KM 3KM
(1) (2) (3) (4) (5)

Firewood used for light

Program Eligible 0.00261 0.00180 0.00206 0.00311 0.00329
(0.00221) (0.00265) (0.00262) (0.00206) (0.00203)

Obs 3213 2371 2471 3719 4440

Firewood used for cooking

Program Eligible -0.0491 -0.0499 -0.0460 -0.0503 -0.0405
(0.0343) (0.0322) (0.0341) (0.0316) (0.0289)

Obs 3210 3603 2468 3717 4437
Notes: This table presents household level non-parametric RD estimates for each firewood variable across a variety
of different bandwidths. CCT refers to the optimal bandwidth as proposed by Calonico et al. (2014). We include
BRAC branch fixed effects and cluster standard errors at the BRAC branch level. Statistical significance denoted as
follows: *** p<0.01, ** p<0.05, * p<0.1
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Table A.8: Regression discontinuity estimates of program eligibility on post program forest loss
(2013 - 2016)

Bandwidth: 2 km CCT 1.5 km 2.5 km 3 km
(1) (2) (3) (4) (5)

Program Eligible 0.0522 0.0442 0.0147 0.0729 0.107
(0.199) (0.212) (0.221) (0.176) (0.162)

Mean loss in control (ha/yr) 0.248 0.268 0.286 0.283 0.274
Obs 222 188 163 278 322

Notes: Presented are non-parametric regression discontinuity estimates of program eligibility across different band-
widths on forest loss after the BRAC program ended. The outcome is average residualized asinh of annual forest
loss after the end of the program (2013 - 2016). The sample is limited to BRAC Branches that did not participate in
the staggered phaseout program. Standard errors are clustered at the BRAC branch level. Statistical significance
denoted as follows: *** p<0.01, ** p<0.05, * p<0.1
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