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Abstract

We study a social dilemma in a single-queue system in which human servers have

discretion over the effort with which to process orders that arrive stochastically.

We show theoretically that the efficient outcome in the form of high effort can be

sustained in the subgame perfect equilibrium if the interactions are long term (even

when each server has a short-term incentive to free ride and provide low effort).

In addition, we show that queue visibility plays an important role in the type of

strategies that can sustain high-effort equilibrium. In particular, we show that lim-

iting feedback about the current state of the queue is beneficial if servers are patient

enough. We conduct a controlled lab experiment to test the theoretical predictions,

and find that effort is increasing in the expected duration of the interaction. We also

find that visibility has a strong impact on the strategies that human subjects use;

however, the overall impact on effort provision is modest. We discuss implications

for managers and firms that are trying to improve service systems.
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1 Introduction

Queueing systems composed of servers that carry out a sequence of (randomly) arriving tasks

underlie most economic activity. Examples abound and include the retail industry in which indi-

viduals and companies are selling products that customers demand, the manufacturing industry,

in which a combination of human and non-human workers transform raw materials into finished

products, and the healthcare industry, in which providers deliver services to patients. Not surpris-

ingly then, queueing theory has had a vibrant history across many domains including mathematics

(Erlang, 1909; Kolmogorov, 1931; Kendall, 1951), operations research (Cobham, 1954; Little, 1961),

management (Kao and Tung, 1981; Graves, 1982), and economics (Sah, 1987; Polterovich, 1993).

Although most of the early research assumed servers process orders at fixed rates — a reasonable

assumption when one deals with machines — more recently, the field has seen a push to understand

the implications of servers having discretion over work speed (George and Harrison, 2001; Hopp,

Iravani, and Yuen, 2007), being utility maximizing (Gopalakrishnan, Doroudi, Ward, and Wierman,

2016), or being susceptible to behavioral biases (Bendoly, Croson, Goncalves, and Schultz, 2010).

An important but largely overlooked feature of multi-server queueing systems is that servers in-

teract repeatedly. The repeated interaction provides room for reputation-building and reciprocity,

which may result in more complex strategies on the part of the decision-makers (i.e., servers). Al-

though such strategies have been studied in the theoretical and experimental literature on repeated

games (Dal Bó and Fréchette, 2018), to the best of our knowledge, these topics have not been

investigated in the context of queueing systems. What makes the queueing setting distinct is the

stochastic nature of customer arrivals and the dynamic implication of servers’ decisions. Specifi-

cally, when servers exert high effort, more customer orders are being processed and the length of

the queue is likely to decrease. This change in the number of outstanding orders affects the servers’

short-term incentives, making low effort more attractive. On the other hand, when servers exert

low effort, few customer orders are being processed and the length of the queue is likely to increase,

making the incentives to continue providing low effort less attractive.

In this paper, we consider a setting in which servers work together to repeatedly process orders

from a single queue. In particular, we focus on a scenario in which servers have discretion over

effort and the compensation depends on the total number of customers processed by the group,

which creates an incentive to free ride. We formalize the queueing environment as a stochastic

dynamic game and show theoretically that even when individuals face incentives to free-ride, high

effort can be supported in the subgame perfect equilibrium of the game if the expected length of the

indefinite interaction is long enough. In addition, we explore the role of common knowledge about

the number of customer orders in the queue (i.e., queue visibility). We show that sustaining high

effort when the queue is not visible is theoretically possible. We also show that when the queue

is visible, there exist equilibria in which players play a class of state-contingent trigger strategies

that provide high effort when the queue is long, and provide low effort when the queue is short –

dynamics that have been documented in the empirical studies (e.g., Kc and Terwiesch, 2009).

We use a controlled laboratory experiment to test our theoretical predictions for a simplified
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two-server three-state queueing system. In the experiment, we implement a 3 × 2 factorial design

in which we vary the expected duration of interaction (i.e., probability of continuing interaction

to the next period) and whether servers know the state of the queue (i.e., whether servers can see

the number of outstanding tasks). We find clear evidence that effort is increasing in the expected

duration of repeated interaction. Regarding the queue visibility, we find that when servers can see

the state of the queue, a significant proportion provide high effort when the queue is long, but

provide low effort when the queue is short. When servers cannot see the state of the queue, we

find no substantial differences in effort when comparing across states of the queue. In addition to

the analysis of (observable) effort, we carry out econometric estimation of (unobservable) strategies

that subjects use. When the queue is not visible, we find that subjects either play Always Defect

(i.e., provide low effort in all states of the queue regardless of the actions of the other server)

or play tit-for-tat. When the queue is visible, we find a significant proportion of subjects use

sophisticated state-contingent versions of tit-for-tat and trigger strategies. These strategies respond

to the behavior observed the last time the queue was in the current state.

The rest of the paper is organized as follows: In section 2, we review related literature in

operations management and economics. In section 3, we develop the notation and set up theoretical

characterization of a subgame perfect Nash equilibrium. In section 4, we present the experimental

design for a simplified environment with two servers and three states of the queue, as well as provide

theoretical predictions for the chosen parameters. In section 5, we carry out the analysis of the

data. In particular, we first analyze effort choices and then conduct econometric estimation of

underlying repeated-game strategies. We conclude in section 6.

2 Related Literature

Our work contributes to four broad streams of research across operations management and eco-

nomics. The first stream includes papers that investigate queueing systems with human servers.1

Our contribution to this stream can be organized along two dimension. The first dimension includes

the theoretical analysis of the effort provision when servers are utility-maximizing (e.g., Zhan and

Ward, 2018, 2019). Among the most relevant theoretical papers along this dimension is Gopalakr-

ishnan, Doroudi, Ward, and Wierman (2016), who study strategic servers in multi-server systems

and the impact of scheduling policies on the equilibrium of the one-shot game among the servers.

Our project contributes to this dimension by theoretically investigating the impact of long-term

relationships and queue visibility on the servers’ effort provision. In particular, we focus on the

strategies that servers can use to enforce high effort in the subgame-perfect Nash equilibrium of

the repeated game underlying the queueing system. The second dimension includes experimen-

tal papers on human-server behavior in queueing systems. The most relevant papers along this

1For a thorough discussion of issues studied within the stream of literature that considers servers as decision-
makers, we refer the reader to section 9.3 of the recent review by Allon and Kremer (2018). The review also
encompasses related streams that consider the effect of the customer (section 9.2) and the manager (section 9.4)
having discretion over the respective decisions.
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dimension include Schultz, Juran, Boudreau, McClain, and Thomas (1998), Schultz, Juran, and

Boudreau (1999) and Powell and Schultz (2004), who consider behavioral factors that influence ef-

fort provision in variety of queueing systems. More recent work along this dimension also includes

Buell, Kim, and Tsay (2017), who find that operational transparency increases customers’ percep-

tions of service quality and reduces throughput times, Shunko, Niederhoff, and Rosokha (2018),

who find that the visibility of the queue may speed up servers’ service rate, and Hathaway, Kagan,

and Dada (2020), who find that servers incorporate the state of the queue into their decisions.

Our work is distinct in that we provide a game-theoretic foundation for the server’s behavior and

highlight that visibility of the queue may have different consequences on server’s effort provision

depending on the expected duration of an interaction among servers.2 In addition, we Finally,

although a large body of literature has considered empirical regularities associated with human-

server behavior (e.g., a review by Delasay, Ingolfsson, Kolfal, and Schultz, 2019), our paper is the

first to conduct econometric investigation of the repeated-game strategies that human servers may

use in queueing systems.

The second stream of research that we contribute to includes papers in operations and supply-

chain management that investigate the impact of long-term relational incentives. Papers in this

stream of literature include Nosenzo, Offerman, Sefton, and van der Veen (2016), who investigate the

threat of punishment and power of rewards in the repeated inspection game; Davis and Hyndman

(2018), who investigate the efficacy of relational incentives for managing the quality of a product

in a two-tier supply chain; Beer, Ahn, and Leider (2018), who show that the benefits of buyer-

specific investments for both suppliers and buyers are strengthened when firms interact repeatedly;

and Hyndman and Honhon (2019), who investigate indefinitely binding and temporarily binding

contracts in the repeated two-person newsvendor game. Taken together, the findings from these

papers suggest that long-term relationships can be effective in enforcing more efficient outcomes.

Our project contributes to this stream of research by highlighting the role of repeated interactions

on the behavior of servers in the queueing setting.

The third stream of literature that we contribute to is the experimental and theoretical work in

economics that investigates behavior in the indefinitely repeated Prisoner’s Dilemma (henceforth

PD) game (see Dal Bó and Fréchette, 2018, for a review). Papers in this stream of literature

have shown that cooperation is sensitive to the probability of continuation and payoffs, and that

cooperation may not always be sustained even if theoretically possible (e.g., Dal Bó and Fréchette,

2011; Blonski, Ockenfels, and Spagnolo, 2011). Regarding the strategies that human subjects use

in PD experiments, recent papers including Dal Bó and Fréchette (2011, 2019) and Romero and

Rosokha (2018, 2019b) show that simple strategies such as Grim Trigger, Always Defect, and

Tit-for-Tat are prevalent. The extent to which these strategies will be played in a stochastic

2In this paper, we consider customers as non-strategic agents. Previous work has shown that the visibility of the
queue may impact customers’ decisions of joining/reneging the queue (for a review of the literature that considers
the impact of information about the queue on customers’ decisions and the resulting system properties see Chapter
3 of Hassin, 2016). As a direction for future research, it would be interesting to build a model that considers both
– strategic servers that interact repeatedly, and strategic customers that have a choice of when to join/renege the
queue.
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environment with a transition between the PD and non-PD games is unknown. In particular, in

our setting, cooperation (i.e., high effort) in the PD game leads to a higher likelihood that the

non-PD game in which low effort is both the Nash equilibrium and the socially optimal outcome

will be played next. These transitions create room for spillover effects related to Knez and Camerer

(2000), Peysakhovich and Rand (2016), and Cason, Lau, and Mui (2019), and path dependence in

equilibrium selection studied by Romero (2015).

The fourth stream of literature that we contribute to explores dynamic and stochastic repeated

games.3 Early papers in this literature include work by Green and Porter (1984) and Rotemberg and

Saloner (1986), who theoretically show that collusion among firms can be supported in the presence

of stochastic demand shocks. Recent experimental work by Rojas (2012) confirmed that collusion in

such environments can arise in the lab. In an experimental study of the dynamic oligopoly game,

Salz and Vespa (2017) point out that restricting attention to Markov strategies, when decision-

makers can use a richer class of state- and history-contingent strategies to support cooperation in

SPE of the repeated game, may lead to systematic biases in estimation of strategies. Our work is also

closely related to the dynamic (Vespa and Wilson, 2015, 2019) and stochastic (Kloosterman, 2019)

variations of the repeated PD game. Vespa and Wilson (2015) find that subjects are conditionally

cooperative and adjust their behavior not only in response to the state, but also to the history.

Vespa and Wilson (2019) test the extent to which subjects internalize the incentives of changing

the transition rule from endogenous to stochastic. Kloosterman (2019) focuses on the beliefs about

the future in a two-state stochastic PD and finds that subjects cooperate when beliefs about the

future support a large scope for punishment. Our work is distinct in that the queueing problem that

we study combines both the dynamic and the stochastic components. In particular, the dynamic

implications of decisions are different from environments studies in previous work. In addition, we

focus on the common knowledge about the underlying state. We find evidence that when the queue

is visible, a significant portion of subjects relies on history-contingent repeated-game strategies to

sustain high-effort cooperation.

3 Theoretical Background

In this section we provide a theoretical background for the case of a single-queue system with

N = {1, 2} identical servers and a finite buffer of size B. In particular, suppose that in each

time period t ∈ {1, ...,∞}, λt customer orders arrive to the queue and servers discount the future

according to the common discount factor δ. Further suppose λt is a random variable that is

distributed according to G, where G is a distribution with integer support on [λmin, λmax]. Then,

let Θ =
{
θ ∈ N

∣∣ λmin ≤ θ ≤ B
}

denote the set of states of the queueing system. That is, θt ∈ Θ

denotes the number of customers in line in period t. In this paper, we are interested in scenarios

3Our work is also related to the study of dynamic common-pool resource games (Walker, Gardner, and Ostrom,
1990; Gardner, Ostrom, and Walker, 1990). Recent papers that experimentally study common-pool resource games
by Vespa (2017) find that although efficiency can be supported with history-contingent strategies, in practice, subjects
find it difficult to cooperate and rely on state-contingent Markov strategies.
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in which servers face a social dilemma in at least one state of the queue.

To set up such a dilemma, we consider an environment in which (i) servers have discretion over

effort and (ii) free-riding incentives exist for each of the servers. Regarding the discretion over

effort, we assume that each server can choose among a finite number of effort levels such that the

higher the effort level the more capacity exists in a period. We further assume that the cost of

processing orders, c(.), is increasing in effort and is convex in the number of orders processed within

a period by the server.4 Regarding the free-riding incentives, we assume that individual payoff,

r(.), is a function of the total number of customers processed by the group.5 Next, we focus on the

case of a two-server queuing system in which each server has a discretion over two effort levels.

3.1 One-shot Game

Suppose that in each period, server i ∈ N decides on whether to provide high effort or low effort,

ei ∈ Ei := {h, l}. For simplicity, assume that with the low effort, each server can process up to one

order per period, while with the high effort, each server can process up to two orders per period.

Let mi(ei, e−i, θ) denote the number of orders actually processed within a period by server i and

c(ei, e−i, θ) denote the corresponding personal cost. Next, suppose the service process is such that

the manager cannot observe the effort levels contributed by each server, but can only observe the

total output each period. That is the compensation to server i, r(ei, e−i, θ), is a function of the

total number of customer orders processed by the group, M(ei, e−i, θ) =
∑

i∈{1,2}mi(ei, e−i, θ).

Then, the net payoff within a period to server i is u(ei, e−i, θ) = r(ei, e−i, θ)− c(ei, e−i, θ).
Let g(θ) = 〈N,E,U(θ)〉 denote the stage-game played in state θ, where the set of players is

given by N , the set of strategy profiles is given by E =
∏
Ei, and the set of payoffs is given by

U(θ) = {u(e, θ) : e ∈ E}. We restrict our attention to the scenario in which providing low effort is

a dominant action of g(θ) ∀ θ ∈ Θ, but there exists θ′ ∈ Θ for which a high effort profile is socially

optimal. Formally, we restrict our attention to games in which the following two conditions hold:

ui(l, ej , θ) > ui(h, ej , θ) ∀ ej ∈ Ej , θ ∈ Θ, (1)

∃ θ′ ∈ Θ : 2r(h, h, θ′)− 2c(h, h, θ′) > 2r(l, l, θ′)− 2c(l, l, θ′). (2)

Inequality (1) means that regardless of what the other player does, each player receives a higher

payoff for providing low effort than for providing high effort. In particular, (1) implies that effort

profile ed = (l, l) is the unique Nash equilibrium of the stage game g(θ) ∀θ ∈ Θ. Inequality (2)

4The convex cost assumption is a standard component across the theoretical, empirical, and experimental streams
of literature (e.g., Mas and Moretti, 2009; Ortega, 2009; Clark, Masclet, and Villeval, 2010; Gill and Prowse, 2012).

5Group-based payment schemes are frequently observed in the real world. For example, Ortega (2009) find that
group-based performance pay is the third most frequent type of performance pay among employees according to
the European Working Conditions Survey. In the queuing context, examples include Tan and Netessine (2019) who
document that restaurant workers face, at least in-part, team-based incentives, and Hamilton, Nickerson, and Owan
(2003) who document team-based incentives in the garment industry setting with a group of workers facing a queue of
cloth pieces that need to be sewn together into garments (the team then receives a piece rate for the entire garment).
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means that there exists a state θ′ in which both players receive a lower payoff if both provide low

effort than if both provide high effort. Notice that (1) and (2) imply that the game played in state

θ′ is a 2-player Prisoner’s Dilemma. In practice, the two conditions are satisfied if the extra cost of

providing high effort, ci(h, ej , θ)− ci(l, ej , θ), is greater than the individual benefit of increasing the

capacity by an extra order, r(h, ej , θ) − r(l, ej , θ), but less than the total benefit to both players,

2r(h, ej , θ)− 2r(l, ej , θ).

Our goal is to investigate the server’s behavior when interactions are repeated. In particular, it

is well known from the repeated-PD literature that when players face the same problem repeatedly

over the time horizon t ∈ {1, 2, 3...,∞}, they may be able to use trigger strategies to sustain high

effort (i.e., socially efficient choices). However, the extent to which high effort can be sustained in

the queueing setting with randomly arriving customer orders and the queueing dynamics that lead

to transitions between PD and non-PD stage-games has been unexplored. Next, we formally set up

the stochastic game and consider some of the strategies the players may use to sustain high effort

in equilibrium.

3.2 Stochastic Game

Let Γ = 〈N,E,U,Θ,P〉 denote a stochastic game implied by the queueing environment above. In

particular, in addition to sets N , E, U , and Θ, let P denote the transition probability across the

states. Specifically, let Peiejθθ′ := P(θ′|θ, e) denote the probability that the next state is θ′ given

the current state θ and the effort profile e ∈ E. Notice that the transition probability is fully

determined by the current state, the action profile by the servers, and the arrival process.

We distinguish between three types of repeated-game strategies. The first are the state-

contingent Markov strategies. These strategies condition only on the realization of θ. For example,

a player may always provide high effort in one particular state θ and always defect in all other

states. We refer to this strategy as ACθ. The second are the history-contingent strategies. These

strategies condition only on the realized history of actions but not on the current state or the history

of states. An example of this type of strategy is the well-known Grim trigger strategy (henceforth

GT ), which begins by providing high effort in the first period and continues to provide high effort

until one of the players provides low effort. The third are state- and history-contingent strategies.

These strategies condition on both the state realization and the history of actions. An example of

this type of strategy is a strategy that plays GT in a particular state θ but always provides low

effort in all states θ′ 6= θ. We refer to such a strategy as GT θ.

To check whether a strategy profile s is a subgame perfect Nash equilibrium (henceforth, SPE),

we have to check whether for each player i and each subgame, no single deviation would increase

player i’s payoff in the subgame. For example, to find conditions under which strategy profile

sGT = (GT,GT ) is an SPE, we have to check single deviations in two kinds of contingencies: (1)

after histories in which all players provided high effort and (2) after histories in which at least one

of the players provided low effort at some point. To evaluate whether a player has a profitable

deviation in state θ for the first type of contingency, we need to compare the total value from
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continuing to provide high effort, which we denote as V c(θ), and the total value of deviating, which

we denote as V dev(θ). Formally,

V c(θ) = u(ec, θ) + δ
∑
θ′

Phhθθ′V c(θ′) (3)

V dev(θ) = u(edev, θ) + δ
∑
θ′

P lhθθ′V d(θ′) (4)

V d(θ) = u(ed, θ) + δ
∑
θ′

P llθθ′V d(θ′). (5)

The second type of contingency in which one of the players has deviated is satisfied because

the best course of action given that the other is going to provide low effort is to provide low effort

oneself. Thus, a strategy profile sGT is a subgame perfect Nash equilibrium of Γ if

V c(θ)− V dev(θ) ≥ 0 ∀ θ. (6)

3.3 Uncertainty about the State

As discussed in the introduction and the literature review, several existing papers have proposed

modifying queue visibility as a useful tool to improve server effort provision. In this paper, we

consider queue visibility from the perspective of strategies that servers use during their repeated

interactions. In particular, if the queue is visible, players have common knowledge about the state

θ; however, if queue is not visible, the state of the game is not known. Common knowledge about

the state is important in the repeated-interaction context because it affects the type of strategies

that servers can implement to enforce high effort in equilibrium. For example, suppose servers do

not know the state of the game (i.e., the queue is not visible) but have access to the history of

actions by the other servers, then a repeated-game strategy can condition on the history of action

profiles but cannot condition on the current state θ. In particular, a strategy profile sGT is a

subgame perfect Nash equilibrium if

Eθ

[
V c(θ)− V dev(θ)

]
≥ 0. (7)

Notice the difference between (6) and (7) is that the former has to hold for each state (including

states with high incentives to deviate), whereas the latter has to hold in expectation. We show

in section 4.1 that this feature means that not knowing the state of the queue may lead to higher

effort provision among the servers. On the flip side, knowing the queue length means that servers

may more easily sustain high effort in a subset of states.
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4 Experimental Design and Theoretical Predictions

For the experiment, we set B = 4, G uniform, λmin = 2, λmax = 4, and Θ = {2, 3, 4}. We

chose the environmental parameters so that the number of states is small (so can be reasonably

implemented in the lab) yet provides room for queueing dynamics with the queue being shorter or

longer than the average arrival rate. In terms of the payoffs, we picked the parameters of the convex

cost function, c(.), and the parameters of the compensation function, r(.), so that in addition to

creating an environment with desired features, the payoffs match stage-game parameters from the

existing papers in the literature that have been shown to yield a range of cooperative behavior

(e.g., Dal Bó and Fréchette, 2011).6,7 The resulting payoffs for each combination of effort choices

are presented in Figure 1.

6The cost of processing mi(.) orders with high effort is c(h, ej , θ) = bh0 +bh1mi(h, ej , θ)+bh2mi(h, ej , θ)
2 with bh0 = 49,

bh1 = −37, bh2 = 22. The cost of processing mi(.) order with low effort is c(l, ej , θ) = bl0 + bl1mi(l, ej , θ) + bl2mi(l, ej , θ)
2

with bl0 = 40, bl1 = −37, bl2 = 22. Notice that the only difference is that bh0 > bl0, and thus, ceteris paribus, providing
high effort is more costly.

7The individual compensation when the group processes M(.) orders is r(ei, ej , θ) = br0M(ei, ej , θ)+br11M(ei,ej ,θ)=4

with br0 = 25 and br1 = 11. The interpretation is that the server is compensated based on the total number of units
processed by the group in two ways. The first is per-unit compensation. The second is a bonus that is paid when
the favorable output is observed. Notice that 4 orders are processed only if both servers provide high effort. Bonus
payment based on the observable outcomes is a common feature of many compensation structures (e.g., Hashimoto,
1979; Blakemore, Low, and Ormiston, 1987; Bell and Reenen, 2014; Hathaway, Kagan, and Dada, 2020).
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Figure 1: Stage-Game Payoffs in Each State
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l 50 , 12 25 , 25

Server 2
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1

State 4

h

h

48 , 48

l

12 , 50

l 50 , 12 25 , 25

Notes: The three columns present stage-games played in the three possible states. State θ ∈
{2, 3, 4} corresponds to θ customer orders in line. Each player chooses low effort (l) or high effort
(h) to process customer orders. With low effort each player can process up to one order; with
high effort each player can process up to two orders. Matrices present normal form representation
of the stage game played in each state. Notice that stage games played in states 3 and 4 are
PD, and the stage game played in state 2 is non-PD.

The consequence of the payoffs presented in Figure 1 is that when two customer orders are

available, the dominant action is to provide low effort (i.e., process one order), which is also the

socially optimal outcome in that state. However, when three or four customer orders are available,

then the socially optimal outcome is for both servers to provide high effort even though, individually,

each would prefer to provide low effort. In other words, when three or four customers are in line,

there exist short-term incentives to free ride but long-term incentives to cooperate. In terms of the

difference between states 3 and 4, the free-riding incentives are larger when three customer orders

are in line, because each player would prefer that the other provide high effort and process two of

the three customer orders.

Figure 2 presents example dynamics in our experimental environment. In particular, panel (a)

presents an example in which there are three customer orders in line, and both servers select low

effort. In such a case, one order will be leftover for the next period. Panel (b) presents an example

in which four new customer order arrive. In which case, the total number of customer orders will

exceed the buffer size, and as a result one order will be lost. Then panel (c) presents a the outcome
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if one server provides high effort and the other server provides low effort.8

Figure 2: Example Dynamics

Server 1

l

Buffer

Leftover

(a)

Server 2

l

$25

$25

Lost Demand

(b)

New Arrivals Server 1

Server 2

(c)

Server 1

l

Server 2

h

$50

$12

Notes: Panel (a) presents an example decision in period t. In particular, suppose three customer
orders are in the queue and each server selects low effort; then, two orders are processed in period
t and each server earns 25 points. The payoffs are determined from the stage-game payoff matrix
in Figure 1 corresponding to state 3. Panel (b) presents example arrivals in period t+1. For this
example, four orders are arriving in period t+ 1, and because the new orders together with the
leftover orders from period t exceed the buffer size, one order is considered lost demand. Panel
(c) presents an example decision in period t+ 1 whereby server 1 chooses l and server 2 chooses
h. The payoffs are determined from the stage-game payoff matrix in Figure 1 corresponding to
state 4.

4.1 Theoretical Predictions

In this section, we derive conditions under which cooperation in the form of high effort may arise

in the stochastic game specified above. In particular, the game has a nice feature that both the

Nash equilibrium of all stage games and the Markov perfect equilibrium of the overall stochastic

game is to provide low effort in all three states. Thus, high effort can only be sustained using

strategies that condition on the past history of play. We first begin by deriving the condition on

the discount factor that would ensure that high effort could be supported in equilibrium of the

infinitely repeated game. In particular, we follow the typical approach in the theoretical literature

and focus on trigger strategies.

To determine whether GT is an equilibrium strategy, we first find the transition probability

matrix implied by the strategy profile sGT . In particular, if both players provide high effort, the

transition probabilities are given by Phh; if one player deviates from high effort, the transition

probabilities are given by P lh; and if both players provide low effort, the transition probabilities

are given by P ll:

Phh =


θ 2 3 4

2 1/3 1/3 1/3

3 1/3 1/3 1/3

4 1/3 1/3 1/3

 P lh =


θ 2 3 4

2 1/3 1/3 1/3

3 1/3 1/3 1/3

4 0 1/3 2/3

 P ll =


θ 2 3 4

2 1/3 1/3 1/3

3 0 1/3 2/3

4 0 0 1

 (8)

8A non-stochastic version of the study would be identical to the classic Prisoner’s Dilemma game with the exception
of the action labels.
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Thus, if both players provide high effort, they process all of the customer orders, and therefore

the transition probability is determined by the arrival process (i.e., uniform distribution). However,

if one or both players provide low effort, then some of the states will have leftover customer orders,

which, together with the arrival process, implies that transition to states with more customers is

more likely. Vectors uc, udev, and ud specify payoffs obtained in each of the states:

uc =

16

32

48

 udev =

25

50

50

 ud =

25

25

25

 . (9)

Lastly, the total values for the three cases in matrix notation are

V c = [I − δPhh]−1uc V dev = udev + δP lhV d V d = [I − δP ll]−1ud. (10)

To show that sGT is an SPE when the queue is visible, we need to find δ so that each element of

V c is at least as large as the corresponding element of V dev. We find that this holds when δ is 0.72.

We denote this critical threshold as δ∗v(GT ). When the queue is not visible, we solve (7) and find

that δ∗nv(GT ) is 0.58, which means that full effort can be supported at a lower discount factor.The

reason is that when the queue is visible, players know the exact state they are in, so they know the

exact benefit of providing high or low effort in the current period. However, if players do not know

the exact state, they can only consider the expected benefit. Thus, we have theoretical evidence

that under some conditions, reducing visibility may be beneficial.

Notice that GT does not distinguish among the states. Next, we consider two trigger strategies

that do. In particular, the first strategy, which we term GT 34, plays GT across states 3 and 4 and

always provides low effort in state 2. The only difference in the analysis above is that uc =
( 25
32
48

)
,

which leads to δ∗(GT 34) = 0.64. The second state- and history-contingent strategy, which we

term GT 4, plays GT in state 4 only and provides low effort in both states 2 and 3. The implied

transition-probability matrices and the payoff vectors for this strategy are

Pc =


θ 2 3 4

2 1/3 1/3 1/3

3 0 1/3 2/3

4 1/3 1/3 1/3

 Pdev =


θ 2 3 4

2 1/3 1/3 1/3

3 0 1/3 2/3

4 0 1/3 2/3

 P ll =


θ 2 3 4

2 1/3 1/3 1/3

3 0 1/3 2/3

4 0 0 1

 (11)

uc =

25

25

48

 udev =

25

25

50

 ud =

25

25

25

 . (12)

Notice that we chose to label the transition probabilities as Pc instead of Phh and Pdev instead of

P lh, because the cooperative path of sGT
4

involves low effort in states 2 and 3. Solving for δ∗(GT 4),
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we get 0.19. Thus, in terms of the server discount factors, GT 4 is the easiest to sustain, followed

by GT 34, and GT being the most difficult to sustain when the queue is visible. An interpretation

of this result is that cooperating is easier when the queue is long than when it is short.

Lastly, we would like to note that it is possible to sustain some amount of high effort in equi-

librium even when the discount factor is low and the queue is not visible. In particular, players

can infer the probability of being in a state given a sequence of action profiles. For instance, if

players observe a long sequence of defections, then even without knowing the history of states,

the probability of the queue being long is very high. If, in addition, players can observe (or infer)

partial history of states, they can reach this conclusion with more certainty. For example, for our

parameter combination, if players have observed that θt−1 = 4 and et−1 = (l, l), then even without

observing the current state, the players should conclude that Pr(θt = 4) = 1. We define a trigger

strategy D.AlT 4 that defects until mutual defection has been observed in state 4 and then coop-

erates in the subsequent period. Then, after one round of high effort, this strategy immediately

reverts back to defection until another mutual defection is observed in state 4 in the past. The

strategy is also a trigger strategy in that it prescribes low effort forever if one of the players did

not cooperate after mutual defection has been observed in state 4. We calculate that δ∗nv(D.AlT
4)

is 0.40.

4.2 Treatments and Hypotheses

In the experiment, we implement a 3× 2 factorial design in which we vary the expected length of

the interaction and queue visibility. To induce long-term relationships, we implemented a random

termination protocol of Roth and Murnighan (1978). In particular, we described this protocol to

subjects as the computer rolling a 12-sided die each period of the match, with the match continued

if the number was below 7 (9; 11) for the δ = 3
6 (δ = 4

6 ; δ = 5
6) treatment. To ensure that subjects

were comfortable with this procedure, we included a testing phase in which we required subjects to

roll the computerized dice to simulate a duration of 10 matches. The rolls in the actual experiment

were pre-drawn so that different visibility treatments had the same supergame-length realizations.

The supergame-length realizations for each treatment are presented in Figure D1 in the Appendix

D.

To vary the queue visibility, we modified the timing of when the number of new order arrivals

was revealed within the decision period. In particular, for the treatments in which the queue was

visible, the number of new orders was revealed before subjects made their decisions for that period.

Thus, in the visible treatment, subjects knew the number of outstanding orders and the stage-game

payoff matrix at the time of making their decision. For the treatments in which the queue was not

visible, the number of new orders was revealed after subjects made their decisions for that period.

Thus, at the time of their decision, subjects did not know the exact number of outstanding orders

nor the exact stage-game payoff matrix. In both cases, subjects had access to the history of states

and actions from all of the previous periods of the match. Other than the timing of the new orders,

the instructions for different visibility treatments were the same.
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Note that the three values of δ were picked so that in combination with the variation in visibility,

we obtained distinct predictions regarding the SPE strategies that can sustain high effort across

the three states of the visible treatment. Table 1 presents the summary of the six treatments of

our experiment. For each treatment, we list the SPE strategy as well as the expected amount of

high effort, the waiting time, and the throughput losses of the queuing system if subjects are using

those strategies.

Table 1: Summary of Theoretical Predictions

Treatment

Visibility δ

Subgame Perfect Equilibrium

Strategy High Effort (%) Waiting Time Throughput Losses

Yes 3
6 GT 4+ 28.4 0.999 3.4

Yes 4
6 GT 3+ 66.7 0.806 0.0

Yes 5
6 GT 3+ 66.7* 0.806 0.0

No 3
6 D.AlT 4 10.8 1.154 10.2

No 4
6 GT 100.0 0.639 0.0

No 5
6 GT 100.0 0.639 0.0

Notes: Strategies supported as a subgame perfect equilibrium and the resulting cooperation
percentages (i.e., high effort percentages) during interactions. Waiting times (in periods) are
calculated assuming all orders arrive at the beginning of the period and the order is processed in
0.5 periods if the server chose high effort and 1.0 periods if the server chose low effort. Waiting
times include processing times. GT θ+ denotes a trigger strategy that plays GT across states
{θ, θ + 1, ...} and plays AD across states {θ − 1, θ − 2, ...}. D.AlT θ denotes a trigger strategy
that provides high effort immediately after observing mutual defection in state θ. *When δ = 5

6
,

GT 2+ is also an equilibrium strategy, however, we expect that because players can see the state,
they will learn to provide low effort when θ = 2, and high effort when θ ∈ {3, 4} thereby
achieving an efficient outcome in all states.

Next, we provide three general hypotheses based on the theoretical predictions summarized in

Table 1. Our first hypothesis deals with the effect of the expected duration of the interactions:

Hypothesis 1 Effort is increasing in the expected duration of an interaction.

We expect that in both the visible and the not-visible treatments, a longer expected duration

of an interaction would lead to higher effort. This hypothesis is consistent with the existing experi-

mental evidence on the effect of an increase in the probability of future interactions on cooperation

in repeated-game settings (e.g., see Result 1 in Dal Bó and Fréchette, 2018).
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Our second hypothesis deals with the effect of queue visibility on cooperation:

Hypothesis 2 For low δ, effort will be higher when the queue is visible; for high δ, effort will be

higher when the queue is not visible.

Given our theoretical results, we expect that when the discount factor is low (δ = 3
6), some

amount of higher effort can be sustained if the queue is visible, because subjects should be able to

sustain high effort when the queue is long. However, if the state of the queue is not known, none

of the Grim-trigger-like strategies can be supported in SPE. When delta is 4
6 , the prediction flips

and we expect higher effort if the queue is not visible than when it is visible. Lastly, when delta is
5
6 , full effort can be supported in equilibrium in both settings. Nevertheless, we expect that when

the queue is visible, subjects will learn to coordinate on an efficient outcome which is to provide

low effort when the queue is short and provide high effort when the queue is long.

The third hypothesis deals with the type of strategies that we should observe across the treat-

ments.

Hypothesis 3 When the queue is (not) visible, subjects will (not) use state-contingent strategies.

A nice feature of our design is that, with an exception of one treatment, the strategies that

lead to maximum effort in each treatment are distinct. In particular, we expect to observe state-

contingent strategies when the queue is visible but no state-contingent strategies when the queue

is not visible. In addition, when the queue is visible, we expect subjects to play strategies that

provide high effort across more states as δ increases.

Lastly, we would like to note that the Always Defect strategy (providing low effort regardless

of what the other player does) is an SPE strategy in all treatments. In addition, strategies that

can be sustained in SPE at lower discount factors (e.g., GT 4 and D.AlT 4) can also be sustained

at higher discount factors. Thus, without conducting lab experiments, it is not clear whether and

to what extent subjects will learn to play strategies that cooperate across more state and whether

there will be any differences among the treatments.

4.3 Experiment Details and Administration

We recruited 280 students on the campus of a large public US university between January and

February of 2020 using ORSEE software (Greiner, 2015). We ran 24 sessions with the experimental

interface programmed in oTree (Chen, Schonger, and Wickens, 2016) (see Appendix A for screen-

shots of the interface ). For each session, we invited 14 subjects; however, because of the no-shows,

the actual number of participants in each session varied between 10 and 14. Instructions used in

the experiment consisted of a set of interactive screens that explained all aspects of the experiment,

as well as a printed copy that subjects could use for reference during the experiment (see Appendix

B). At the end of the instructions, subjects completed a 10-question quiz (see Appendix C).
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Table 2: Summary of Experiment Administration

Treatment

Visibility δ

Administration

Sessions Subjects Matches Earnings

Demographics

% Male % STEM % US HS

Yes 3
6 4 42 80 22.6

(0.3)

50.0 61.9 69.0
(7.9) (7.5) (7.4)

Yes 4
6 4 46 50 22.9

(0.3)

56.5 65.2 56.5
(7.2) (7.0) (7.5)

Yes 5
6 4 48 25 24.1

(0.2)

54.2 64.6 75.0
(7.2) (7.0) (6.0)

No 3
6 4 48 80 22.2

(0.2)

66.7 62.5 68.8
(6.8) (6.9) (6.9)

No 4
6 4 48 50 20.8

(0.2)

50.0 68.8 72.9
(7.0) (6.6) (6.5)

No 5
6 4 48 25 22.8

(0.1)

60.4 60.4 66.7
(7.4) (7.0) (6.7)

Notes: Earnings are reported in USD and include a $5 show-up fee. Standard errors are in
parentheses.

We used a between-subjects design whereby each participant took part in only one experimental

treatment. Table 2 presents summary of the six treatments. Each treatment consisted of four

sessions, and each session consisted of either 80, 50, or 25 matches depending on the probability

of continuation. At the beginning of each match, subjects were randomly paired with one other

subject and remained paired with that subject for the duration of the match. Subjects remained

anonymous throughout the session. Throughout the experiment, we used experimental points as

the currency, with 250 points equal $1. Subjects were paid in cash at the end of the experiment.

The average earning in our experiment was $22.60 (including the $5 show-up fee).

5 Experimental Results

Table 3 presents the percentage of high effort observed in the second half of our experiment.9 The

table breaks down actions by effort in the first period and effort across all periods. The first-period

effort is important because it provides clear evidence of the subject’s intention for the match.

Combined with effort across all periods, the first-period effort also provides indirect evidence on

the dynamics within the interaction. For example, the fact that in the visible treatment, effort in

state 4 across all periods is half the effort in state 4 in the first period suggests that subjects may

9Figure D1 in the Appendix presents evolution of effort across all matches of our experiment.
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be using strategies that punish deviation from full effort.

Table 3: Percentage of High Effort

State 2 State 2State 3 State 3State 4 State 4Visibility δ

Treatment First Period All Periods

All States

Yes 3
6 3.7 11.4 15.0

(2.6) (4.0) (4.2)

3.9 17.0 10.7
(2.2) (5.0) (2.9)

10.9
(2.8)

Yes 4
6 0.3 28.6 66.5

(0.3) (5.4) (6.0)

0.7 23.8 34.8
(0.3) (4.7) (4.4)

25.0
(2.6)

Yes 5
6 0.0 41.3 65.0

(0.0) (6.2) (6.5)

1.1 50.5 29.0
(0.4) (5.7) (4.1)

28.4
(3.0)

No 3
6 3.6 3.5 3.8

(1.2) (1.8) (1.4)

6.1 8.9 9.8
(1.7) (2.3) (1.8)

8.9
(1.7)

No 4
6 9.7 8.7 8.9

(4.0) (3.5) (3.9)

15.5 16.0 12.9
(3.3) (3.5) (2.3)

14.0
(2.4)

No 5
6 50.5 36.7 44.3

(6.3) (6.2) (5.5)

64.7 54.2 23.5
(4.8) (4.9) (3.1)

36.8
(4.3)

Notes: Standard errors (in parentheses) are calculated by taking one subject as a unit of obser-
vation.

There are several noteworthy observations from Table 3. The first observation concerns effort

provision in the first period of interaction in each treatment. As expected, no difference exists

across the three states when the queue is not visible. This finding is reassuring in that subjects

cannot distinguish among the states in the first period. When the queue is visible, however, we

find a clear trend – higher effort in the states with more customer orders in line. Specifically, when

the discount factor is 3
6 , the percentage of high effort increases from 3.7% in state 2, to 11.4% in

state 3, to 15.0% in state 4. When the discount factor is 4
6 , the percentage of high effort increases

from 0.3% in state 2, to 28.6% in state 3, to 66.5% in state 4. When the discount factor is 5
6 , the

percentage of high effort increases from 0.0% in state 2, to 41.3% in state 3, to 65.0% in state 4.

All of the increases from state 2 to state 4 are significant at the 0.01 level using a matched-pairs

t-test.

The second observation is that the percentage of high effort is increasing in δ. The difference

is present across all states when the queue is not visible and across states 3 and 4 when the queue

is visible. The difference is particularly noticeable in the first-period outcomes, because outcomes

after the first period largely depend on what happened initially. To formally test whether this

difference is significant, we run a probit regression of the choice of high effort in the first period on

the dummy for whether the discount factor is high (δ = 5
6), with standard errors clustered at the

session level. We find a significant difference (p-value <0.01) both when the queue is visible, and
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when the queue is not visible. We summarize these observations as Result 1.

Result 1 Servers provide higher effort when the expected duration of future interaction is longer.

The third observation from Table 3 is that servers provide higher effort when the queue is visible

than when it is not visible if the discount factor is δ = 3
6 and δ = 4

6 . To formally test whether

the difference is significant, we run a probit regression of high effort in the first period on the

dummy for whether the state is visible, with standard errors clustered at the session level. Taken

separately, when the discounting factor is low (δ = 3
6), the difference is significant at the 0.10 level

(p-value 0.052). When the discount factor is medium (δ = 4
6), the difference is again significant at

the 0.10 level (p-value 0.062). Taken together, the difference is significant at the 0.05 level (p-value

of 0.025).10 However, when the discount factor is high (δ = 5
6), we do not find such a difference. In

fact, when δ = 5
6 , the overall effort is higher when the queue is not visible, which is consistent with

the theoretical prediction of the impact of queue visibility. However, the difference is not significant

(p-value 0.33). We summarize these findings as Result 2.

Result 2 When the expected duration of future interaction is short, servers provide higher effort

when queue is visible. When the expected duration of future interaction is long, there is no difference

in aggregate effort.

The fact that effort provision depends on the state realization when the queue is visible leads

us to believe that subjects use state-contingent strategies. The fact that effort in the first period

is greater than the effort across all periods leads us to believe that subjects are using history-

contingent strategies. Next, we use a finite-mixture estimation approach to formally estimate the

strategies underlying choices in our experiment. The finite-mixture models have been widely used

in economics (e.g., Haruvy, Stahl, and Wilson, 2001; Dal Bó and Fréchette, 2011) to estimate the

proportion of subjects that follow a particular strategy. The method works by first specifying the

set of K strategies considered by the modeler. Then, for each subject n ∈ N , and each strategy

k ∈ K, the method prescribes comparing subject n’s actual play with how strategy k would have

played in her place. Let X(k, n) denote the number of periods in which subject n’s play correctly

matches the play of strategy k. Then, let X denote a K × N matrix of the number of correct

matches for all combinations of subjects and strategies. Similarly, let Y denote a K × N matrix

of the number of mismatches when comparing subjects’ play with what the strategies would do in

their place. Then, define a Hadamard-product P :

P = βX ◦ (1− β)Y , (13)

where β is the probability that a subject plays according to a strategy and (1−β) is the probability

that the subject deviates from that strategy. Thus, each entry P (k, n) is the likelihood that strategy

10A probit regression of high effort in the first period on two dummy variables – visibility and discount factor –
yields p-values of 0.008 and 0.004 when clustering standard errors at the session level.
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k generated the observed choices by subject n. Then, using the matrix dot product, we define the

log-likelihood function L:

L(β, φ) = ln
(
φ′ · P

)
· 1, (14)

where φ is a vector of strategy frequencies.

For our estimation, the set of strategies encompasses the five most common strategies found

in the literature on repeated games as well as state-contingent variations of those strategies. In

particular, we include Always Cooperate (AC), Always Defect (AD), Grim Trigger (GT ), Tit-for-

Tat (TFT ), and Suspicious Tit-for-Tat (D.TFT ) – the five memory-1 strategies that account for

the majority of the strategies in 16 out of 17 treatments reviewed by Dal Bó and Fréchette (2018).

We also include modified versions of these strategies that condition on either state 4 or both states

3 and 4. Notably, we include GT 3+ and GT 4 that were analyzed theoretically. In addition, we

include the D.AlT 4 strategy that could sustain some amount of high effort when the queue is not

visible (as well as the corresponding D.AlT 3+ and D.AlT strategies).

Table 4: Estimated Percentage of Strategies

V
is
ib
il
it
y

δ A
D

A
C

T
F
T

G
T

D
.T
F
T

D
.A
lT

A
C

3
+

T
F
T
3
+

G
T
3
+

D
.T
F
T
3
+

D
.A
lT

3
+

A
C

4
+

T
F
T
4
+

G
T
4
+

D
.T
F
T
4
+

D
.A
lT

4

β
(%

)

L

Yes 3
6 59.4

(9.5)

6.5
(4.4)

2.4
(2.3)

22.5
(8.4)

2.4
(2.4)

2.4
(3.0)

4.3
(4.8)

93.7
(1.5)

-895.9

Yes 4
6 37.9

(7.8)

11.2
(5.1)

14.2
(5.6)

2.5
(2.5)

15.6
(13.5)

18.6
(13.1)

92.0
(0.9)

-1053.6

Yes 5
6 32.7

(6.6)

32.1
(7.9)

13.7
(6.0)

4.5
(3.1)

5.5
(3.6)

5.4
(4.4)

6.2
(5.1)

93.7
(0.8)

-904.9

No 3
6 65.8

(7.6)

2.1
(2.0)

17.0
(6.5)

4.1
(2.5)

2.1
(2.0)

6.8
(4.4)

2.1
(2.1)

93.1
(1.2)

-1096.1

No 4
6 56.7

(7.4)

6.3
(3.7)

2.1
(2.0)

21.4
(6.6)

4.1
(2.6)

3.2
(3.8)

6.3
(3.0)

92.2
(1.2)

-1082.3

No 5
6 36.6

(7.6)

2.1
(2.1)

37.2
(7.9)

6.2
(3.3)

15.8
(4.9)

2.1
(1.9)

89.5
(1.4)

-1244.4

Notes: For ease of reading, estimated percentages < 0.1 are not displayed. Strategy superscripts
denote states in which this strategy is played; in states that are not included in the superscripts,
the strategy specifies to play Always Defect (AD). Bootstrap standard errors are in parentheses.
The unit of observation is one subject.

Table 4 presents the estimation results.11 We find that the most common strategy across all

11The value of (1 − β) can be interpreted as the amount of noise not captured by the specified strategies. When
the queue is visible, our estimates of (1− β) are similar to the estimates in Romero and Rosokha (2018) and Romero
and Rosokha (2019a). However, when the queue is not visible, the values are somewhat lower, suggesting that the
set of strategies may be missing relevant strategies. Table D2 of the Appendix presents the estimates when using
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four treatments is the AD strategy. This finding is not surprising given the prevalence of the AD

strategy in the literature on the indefinitely repeated PD with parameters similar to ours (e.g.,

Dal Bó and Fréchette, 2011). Even so, we find a clear pattern in the type of other strategies used

across the treatments. In particular, when the queue is not visible, over 88% of subjects in each

treatment play strategies that do not condition on the state realization, whereas when the queue is

visible, the proportion of subjects that play strategies that do not condition on the state realization

is 64.4%, 37.9%, and 32.7%. The difference is significant at the 0.01 level using non-parametric

randomization test. We summarize this finding as Result 3.

Result 3 When the queue is (not) visible, servers (do not) use state-contingent strategies.

In terms of the particular strategies played, we find that when the queue is visible, subjects

play sophisticated TFT- and GT-like strategies that provide high effort when the queue is long,

but low effort when the queue is short. These strategies are different from the TFT and GT

strategies studied in the repeated-game literature in that they respond to the opponent’s behavior

conditional on the state of the queue. Importantly, the proportion of these strategies observed in

the data predictably varied by treatment. In particular, we observed an initial increase and then

decrease of the proportion of strategies that cooperate in state 4 but not in state 3 (TFT4+ and

GT4+ accounted for 2.4% when δ = 3
6 ; 34.1% when δ = 4

6 ; and, 11.6% when δ = 5
6).12 The decrease

was due to the switch to strategies that cooperated across more state (e.g., TFT3+ and GT3+).

For example, when δ = 5
6 , 45.8% of subjects used cooperative strategies that provided high effort

in states 3 and 4 as compared to 25.4% when δ = 3
6 , and 0.0% when δ = 3

6 . When the queue is not

visible, subjects could not play any of these strategies, as a result when δ increased we observed

a switch from non-cooperative strategies (AD and DTFT accounted for 82.8% when δ = 3
6) to

cooperative strategies (TFT and GT comprise 43.4% when δ = 5
6).

6 Discussion

In this paper, we theoretically and experimentally investigate the effort provision in a single-queue

two-server system when compensation is based on the group performance. To the best of our

knowledge, we are the first to focus on the repeated nature of interaction among servers in queueing

systems and show theoretically that high effort can be sustained in equilibrium even when there

are short-term incentives to deviate for each server in each of the possible states of the queue

(i.e., number of customers in line). Furthermore, if servers are patient enough, high effort can

be sustained regardless of whether the queue is visible. However, as players become less patient,

visibility becomes an important determinant of the types of strategies that can support high effort

an expanded set of strategies. In particular, we use 20 commonly studied strategies in the indefinitely repeated PD
literature (Fudenberg, Rand, and Dreber, 2012; Cason and Mui, 2019).

12The high standard errors of the estimates for TFT4+ and GT4+ are the results of these two strategies being very
similar in behavior for the considered duration of interactions. When we estimate the joint proportion, we obtain
34.1 with a standard error of 6.8.
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in equilibrium. In particular, we theoretically show that providing less visibility of the queue may

sometimes be better because players will average incentives across multiple states, and may provide

high effort even in states corresponding to the short queue. We also show that if the queue is visible,

sustaining high effort when the queue is long is much easier than when the queue is short.

We conduct a controlled laboratory experiment to test the theoretical predictions. In particular,

we implement a 3 × 2 factorial design in which we vary the expected length of interaction among

the servers and the visibility of the queue. We find that longer expected interactions leads to

higher effort. We find a modest impact of queue visibility on the overall effort. However, we find

strong evidence that the underlying strategies that human servers in the two visibility treatments

are different. Specifically, following the repeated-game literature we carry out finite-mixture model

estimation of the strategies. When the queue is not visible, we find that subjects primarily rely

on always defect, tit-for-tat and suspicious tit-for-tat. When the queue is visible, a significant

proportion of subjects rely on state-contingent versions of tit-for-tat and grim trigger strategies.

These strategies are sophisticated in that they are remember the last time both players were in the

current state and act accordingly.

Our results have several implications for managers who are trying to design more efficient

queueing systems. First, emphasizing the long-term nature of the interaction among the servers is

important. The emphasis on repeated interaction should encourage reputation-building and provide

room for the threat of future punishment. Second, based on our experimental results, ensuring that

the queue is visible would be useful when the expected duration of interaction is short. When the

interactions are long, not providing information about the state of the queue, may be beneficial

if the manager would like to instill homogeneous processing speeds across all of the states of the

queue. In particular, it is theoretically possible to sustain high effort across all states when the

queue is not visible; however, full effort is difficult to achieve in practice. Third, because a large

proportion of subjects in our experiment play state-contingent strategies, the managers should take

into account particular dynamics such as servers providing low effort when the queue is short and

higher effort when the queue is long.

Our paper opens many exciting avenues for future research on understating the behavior of

servers and customers on both the theoretical and experimental fronts. First and foremost, in this

paper, we focused on the strategic implications of repeated interactions among servers. Extending

the equilibrium analysis to include strategic customers and scheduling policies would be of great

importance. Second, we analyzed the case of discrete effort levels, discrete states, and discrete time-

lines. Given recent advances in running (near-) continuous-time experiments (e.g., Friedman and

Oprea, 2012), considering a similar setting with continuous variables along each of those dimensions

would be interesting. Third, we considered a case of identical customers and servers, introducing

heterogeneity in worker ability and customer orders (and thus an asymmetry in the dynamic game)

would add more realism to the environment. Lastly, the extent to which communication among

servers and different matching mechanisms (such as studied by Honhon and Hyndman, 2015) can

improve effort provision in the queueing setting would be of great interest.
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Appendices

A Screenshots

Queue Visible Treatment Decision Screen

Queue Visible Treatment Waiting Screen
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Queue Not Visible Treatment Decision Screen

Queue Not Visible Treatment Waiting Screen
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B Instructions

Experiment Overview

Today’s experiment will last about 60 minutes.

You will be paid a show-up fee of $5 together with any money you accumulate during this experiment.

The amount of money you accumulate will depend partly on your actions and partly on the actions of other

participants. This money will be paid at the end of the experiment in private and in cash.

It is important that during the experiment you remain silent. If you have a question or need assistance of

any kind, please raise your hand, but do not speak - and an experiment administrator will come to you,

and you may then whisper your question.

In addition, please turn off your cell phones and put them away now.

Anybody that breaks these rules will be asked to leave.

Agenda

1. Instructions

2. Quiz

3. Experiment

How Matches Work

The experiment is made up of 80 matches.

At the start of each match you will be randomly paired with another participant in this room.

You will then play a number of rounds with that participant (this is what we call a “match”).

Each match will last for a random number of rounds:

• At the end of each round the computer will roll a twelve-sided fair dice.

• If the computer rolls a number less than 7, then the match continues for at least one more round

(50% probability).

• If the computer rolls a 7 or greater, then the match ends (50% probability).

To test this procedure, click ‘Test’ button below. You will need to test this procedure 10 times.
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Choices and Payoffs

In each round of a match, you will choose whether to complete 1 or 2 tasks. The participant you are

paired with will also choose whether to complete 1 or 2 tasks.

In each round of a match, your payoff will be according to one of the three tables (labeled Table 2 ,

Table 3 , and Table 4 ). Each table presents payoffs from the four pairs of choices that are possible.

These payoffs are in points.

The Table # is determined based on the number of total tasks available in that round. Thus, when there

are 2 tasks available, the payoff is based on Table 2 ; when there are 3 tasks available, the payoff is based

on Table 3 ; and when there are 4 tasks available, the payoff is based on Table 4 .

For example, if you choose 2 and the participant you are paired with chooses 2 and if the payoff

• is according to Table 2 , then your payoff for the round will be 16 points, and the other’s payoff will

be 16 points.

• is according to Table 3 , then your payoff for the round will be 32 points, and the other’s payoff will

be 32 points.

• is according to Table 4 , then your payoff for the round will be 48 points, and the other’s payoff will

be 48 points.

At the end of the experiment, your total points will be converted into cash at the exchange

rate of 250 points = $1.

Which Table Will be Used

In each round, a random number of new tasks will become available. This number will be drawn at random

from a set of numbers {2, 3, 4}, with each number equally likely. We will refer to this random number as the

Number of New Tasks.

To determine the Table # in a round, we will use the Number of New Tasks together with any leftover

tasks from the previous round as follows:

• In Round 1, there are no previous rounds and, therefore, Table # will be equal to the Number of

New Tasks.

• In Round > 1, Table # will be determined in two steps
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– First, we will determine the Number of Leftover Tasks from the previous round. Notice that

if ( Table # in the previous round) is less than the sum of (My Choice in the previous round)

and (Other’s Choice in the previous round) then there will be no leftover tasks and, therefore,

Number of Leftover Tasks will be equal to 0.

– Second, we will determine the Table # in the current round by adding the Number of

Leftover Tasks from the previous round to the Number of New Tasks in the current round.

Importantly, the number of tasks available in each round could be at most 4, so any tasks beyond

4 will be discarded.

For example:

• Suppose that in Round 1 the Number of New Tasks is randomly drawn to be 4, then the payoff in

Round 1 will be determined by Table 4 .

• If you choose to complete 1 task while the participant you are paired with chooses to complete 2

tasks, then your payoff for Round 1 will be 50 points, and the other’s payoff will be 12 points.

• Suppose that in Round 2 the Number of New Tasks is 2, then your payoff in Round 2 will be

determined by Table 3 .

– Specifically, we first determine that the Number of Leftover Tasks from the first round is

1(=4-[1+2]). Second, we add the Number of Leftover Tasks to the Number of New Tasks

and determine that Table # for the second round is 3 (=1+2).

How History Will be Recorded

The history of all variables will be recorded in a history table like the one presented above. In this table

you can see an example history of a match in which the computer picked actions at random. The recorded

variables include:

• Round −− round number.

• Number of New Tasks −− a random draw in that round (one number is drawn from {2, 3, 4} with

each number is equally likely).

• Table −− table that is used to determined the payoffs for that round (either Table 2 , Table 3 , or

Table 4 depending on the number of tasks available in that round).
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• My choice −− your choice (either 1 or 2 ).

• Other’s Choice −− the choice by the participant that you are paired with (either 1 or 2 ).

• My Payoff −− your payoff in that round.

• Other’s Payoff −− payoff of the participant that you are paired with.

Reminder, your earnings will be the sum of your points across all matches converted into cash at the exchange

rate of 250 points = $1. In addition, you will be paid your show-up fee of $5.

Quiz

Next, there will be a quiz with 10 questions.

You have to answer each question correctly in order to proceed to the next question.

If you answer a question incorrectly, you will see a hint. At that point you will have an opportunity to

answer again.

Throughout the quiz, you may refer to the printed instructions.

Matches 1 – 80

During today’s experiment, the Number of New Tasks will be randomly drawn after you and the par-

ticipant with whom you are matched make decisions.

This means that in each round, you and the participant with whom you are matched make decisions without

knowing the Number of New Tasks for that round.

The above instructions were used for the no visibility and δ = .5 treatment. The number of matches,

probability of continuation, and the information about the timing of the decisions relative to the revelation

of the Number of New Tasks were adjusted for each treatment.

C Quiz

The top third of each screen contains the three payoff tables
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D Additional Tables and Figures

Table D1: Supergame Lengths
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Figure D1: Evolution of Effort
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Table D2: SFEM Estimates – Set of strategies from Fudenberg et al. (2012)
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No 3
6 2.1

(1.9)

70.6
(7.6)

17.2
(5.8)

8.1
(4.4)

2.0
(1.7)

92.9
(1.4)

-1107.3

No 4
6 60.1

(7.5)

6.2
(3.5)

26.0
(7.2)

2.1
(1.8)

5.6
(3.5)

91.7
(1.3)

-1112.5

No 5
6 2.1

(2.4)
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(7.3)
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(5.6)

10.6
(4.6)

5.3
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