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Abstract

Recently, a wide variety of economic, social, and political settings are represented by models

with weighted networks where individuals allocate resources across their different connections.

The data associated to these settings is compositional (i.e., a point in a simplex). We introduce

the Dirichlet Covariate Model (Campbell and Mosimann, 1987) for the empirical analysis of this

compositional data. Thus, we contribute to the empirical analysis of networks; so far focused on

unweighted networks. To illustrate the use of the method, we run a novel experimental design

to test the equilibrium predictions of one of the untested models with weighted networks.
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1 Introduction

No man is an island, entire of itself. Many economic, political and social interactions between

individuals occur in a social structure, where individuals interact with each other. Network theory

can formally represent individuals and social structures with nodes and links in a graph (see Jackson

et al., 2008; Goyal, 2012; Bramoullé et al., 2016, for recent reviews). In a first wave of models with

networks, individuals are allowed to select a single action affecting all their connections equally.1

By doing so, we have learnt, for example, that particular social structures can help (or hinder)

diffusion of opinions, technologies or a products (see Jackson and Yariv, 2011; Banerjee et al., 2017;

Bloch et al., 2018, for some example). A more recent wave of models have expanded the framework

allowing a) connections between individuals to have different importance (weighted networks) and

b) individuals to select a distinctive action for each connection.2 In these models, individuals

usually allocate a finite resource (e.g., money, effort, attention) across the different connections

(e.g., Goyal et al., 2008; Franke and Öztürk, 2015; Bourlès et al., 2017; Parise and Ozdaglar,

2019). Such models also have important and ubiquitous applications. For example, the allocation

choices of resources across multiple group activities can drive the outcomes of R&D collaboration

agreements, research in co-authorship networks, public goods in communities or even the outcome

of international conflicts.

How do we analyze the data arising in these richer settings and test predictions from these recent

theoretical models? In the absence of a method to deal with such data, a growing empirical

literature has been restricted to analyze data and test models from the first wave, investigating

how the topology of unweighted networks affects single choices (see Kosfeld, 2004; Choi et al.,

2016; Jackson et al., 2017, for some reviews).3 In this literature, the emerging univariate data

can be analyzed with common econometric methods. However, in the settings associated to the

second wave, the data is compositional, represented by the vector of the relative allocation by an

individual across connections. Thus, we require a different method to analyze the compositional

data emerging in settings from the second wave.

In this paper, we introduce the Dirichlet Covariate Model (Campbell and Mosimann, 1987) to an-
1There is also a literature on how social structures emerge (see Vannetelbosch and Mauleon (2016) for a review of

endogenous network formation) but it is outside the scope of the current paper.
2There are some hybrid models – e.g., models where individuals choose a single action common to every link in a

weighted network (DeMarzo et al., 2003; Ballester et al., 2006).
3Most of this empirical work is experimental and reviewed in Kosfeld (2004) and Choi et al. (2016). Despite

common shortcomings with laboratory experiments (Falk and Heckman, 2009), laboratory experiments can induce
exogenous variations to establish causal inferences, addressing concerns arising with naturally occurring data (e.g.,
endogeneity of the network structure). More details appear in section 4.3.2.
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alyze such data. The Dirichlet distribution has been typically used in the analysis of compositional

data in fields such as geology, machine learning, forensics and linguistics – prominent examples are

Pawlowsky-Glahn and Buccianti (2011), Blei et al. (2003), Lange (1995), MacKay and Peto (1995),

respectively. Three properties of the Dirichlet distribution and the Dirichlet Covariate Model are

key.4

First, like a vector of allocations, the Dirichlet distribution lives in a constrained multivariate space:

the simplex of dimension D−1, where D also represents the dimension of the allocation vector to be

analyzed.5 Second, the Dirichlet distribution is characterized by D (concentration) parameters, one

for each dimension. The expected value of a dimension is determined by the relative weight of the

parameter associated to that dimension with respect to the sum of all of them. Thus, the marginal

effects of the parameters acquire a transparent interpretation – a change in the relative weights

of each allocation. In addition, the variance is determined exclusively by the same concentration

parameters. Finally, these concentration parameters can be expressed as a linear function of a set

of covariates, which can be estimated via maximum likelihood. Once this econometric model is

estimated, Wald tests can be used to test hypotheses – e.g., the risk neutral equilibrium predictions

across connections in weighted networks.6

To illustrate the use of the Dirichlet Covariate Model, we select one of the untested models from

the second wave. In particular, we design an experiment implementing a variation of a model

of bilateral conflicts in weighted networks. This model builds on Franke and Öztürk (2015) and

has been generalized by Cortés-Corrales and Gorny (2018).7 In the model, each agent decides

simultaneously how to allocate their budget across conflicts with other agents they are connected.

Each conflict has an associated value and the winner is selected stochastically à la Tullock (1980).

The objective of the game consists on maximizing the expected payoffs.

In this model, the equilibrium is unique, interior and in pure strategies for a wide range of param-

eters. By implementing parameters in this range, our experiment eliminates potential confounds
4Another interesting property of the Dirichlet distribution (i.e., the prior and posterior are conjugate distributions)

is useful to estimate priors in Bayesian methods (e.g., Conley et al., 2008; Jensen and Maheu, 2010).
5The proposed method can be also applied to alternative strategy sets as long as their domain can be transformed

into the simplex. For example, a multidimensional strategy set representing efforts across connections does not need
to be restricted to live in the simplex (i.e., efforts do not need to sum up to 1). However, these efforts will need to
be transformed into the relative efforts, which sum up to 1, and, then, our method could be applied.

6Testing predictions in weighted network is indeed scarce. According to Choi et al. (2016), “... there is no paper we
are aware of in the network experiments literature within and outside of economics which has investigated weighted
networks. The creation of weighted networks in the lab presents its own challenge...” (p. 468).

7Related models of bilateral conflicts are Huremovic (2015), Hiller (2016), König et al. (2017) and Dziubinski et al.
(2017). Konrad (2009) surveys related multi-battle models without networks and their applications, such as R&D
races, political elections, marketing strategies, sports competitions or war between countries, amongst others. For
the corresponding survey of the experimental literature, see Dechenaux et al. (2015).

2



that could emerge – e.g., participants playing different equilibria or the natural inability of partic-

ipants to mix strategies optimally (Walker and Wooders, 2001; Wooders, 2010). Interestingly, this

unique and interior equilibrium in pure strategies of the implemented model is proved to be impos-

sible to characterize in general, using algebraic operations and roots of natural degrees. When four

players or more are connected in a path, finding the equilibrium can be reduced to solving a general

(and irreducible) polynomial of degree 8 or higher. According to the Abel-Ruffini Theorem, this

class of polynomials cannot be solved using radicals. Thus, not only participants in an experiment

but any human, including game theorists, need to tolerate some error level in approximating the

equilibrium with their choices.8

Using the Dirichlet Covariate Model, we can establish that, in the experiment, there are statistically

significant deviations from equilibrium in weighted networks. These results extend the existing

evidence of deviations in unweighted networks (Choi et al., 2016), which could not be possible

without the Dirichlet Covariate Model.

In addition, to understand how aspects of the topology of the network affect deviations, our exper-

imental design varies systematically three elements of the network: own degree, the distribution of

the degree of the co-participants and weights of the connections.9 These particular elements are

selected because they trace back to cognitive limitations.10 In our experiment, by increasing a par-

ticipant’s degree, their strategy space becomes larger and, consequently, finding optimal solutions

is more challenging. By increasing the diversity in the degree of the co-participants, a participant

faces different cognitive types (i.e. participants with different strategy space size), which requires

a higher strategic sophistication to find the optimal. By changing the weights of the connections

from symmetric (all connections are valued the same) to heterogeneous (connections are valued

differently), the optimal solution becomes computationally more demanding. The results show

that every aspect of the topology affect the deviations but only own-degree is significant. An in-

crease from degree 2 to degree 3 translates into a relative increase of the deviation from equilibrium

(between 35% and 43.75%).

The rest of the paper is structured as follows. Section 2 introduces the Dirichlet Covariate Model.

Sections 3 and 4 describe the theoretical model of bilateral conflict and the experimental design,
8In fact, equilibrium allocations in this paper will refer to approximations found through the Newton-Raphson

algorithm whose tolerance is 10−12 in most popular statistical packages. The deviations exhibited by the actual
subjects are substantial enough for this level (or lower levels) of tolerance not to be binding.

9Previous papers include a variety of networks to show how deviations are robust across networks topologies but
the variation is not designed to study the causal effect of aspects of the topology on deviations. However, correlations
can still be established – e.g., Gallo and Yan (2015) establishes correlations between degree and observed actions.

10Few models with networks have started to investigate the effects of the cognitive limitations of the agents (e.g.
Choi, 2012; Choi et al., 2012; Dessi et al., 2016).
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respectively, which has been selected to illustrate the use of the Dirichlet distribution. Section 5

includes the experimental results and Section 6 concludes.

2 The Dirichlet Covariate Model to Test Predictions in Weighted

Networks

There are alternative methods to the Dirichlet Covariate Model in order to analyze compositional

data. A prominent alternative is the additive log-ratio transformation (Aitchison, 1982), such

that the constrained properties of the simplex space are removed by projecting the data into the

multivariate real space. Consequently, conventional multivariate techniques are again applicable.

However, the marginal effects in terms of the original ratios are not possible to recover and, what

is more, the interpretation of the estimated marginal effects with the log-ratio transoformation

becomes difficult in general.11 This said, an exception to this issue has allowed this method to

enjoy certain prominence within economics – more concretely, in the parametric analysis of demand

(see, for example, Deaton and Muellbauer, 1980; Banks et al., 1997; Lewbel and Pendakur, 2009).

In this literature, the researcher derives specific but flexible demand functions, satisfying axioms of

decision theory; the marginal effect of the log transformation of prices, log(p), on quantity, log(q),

can be interpreted as the price elasticity of demand.

However, the estimation and interpretation of marginal effects with this method in other settings

become difficult. For example, in strategic settings, beliefs as well as preferences are included in a

rational decision. Thus, the log-ratio transformation method does not enjoy the same possibility

of interpreting the marginal effect in strategic settings as in the parametric demand analysis. In

addition, recent research (Hijazi and Jernigan, 2009) have shown that, for compositional data, the

Dirichlet distribution produces estimates closer to the real ones than the log-ratio transformation

method.

For these reasons, we propose to use, instead, the Dirichlet Covariate Model (Campbell and Mosi-

mann, 1987). Thus, we assume the Dirichlet distribution as the generating process of the com-

positional data. The Dirichlet distribution is endowed with interesting properties, making this
11To illustrate this point, consider the relation between two variables Y and X, such that Y = g(X) and Y

is a compositional variable, Y =
a

a+ b
with (a + b) = 1. The log-ratio transformation of Y implies ln(Y ) =

ln(a)− ln(a+ b) = ln(a). Thus, by projecting Y to the unconstrained multivariate space, we estimate ln(a) = g(X).
The estimates function ĝ(X) reflects the marginal effect of X on ln(a), but not on Y . Hence, this transformation
loses information about the marginal effect of X on Y . It is always possible, however, to estimate structural “deep”
parameters. Choi et al. (2007) is a recent example in which risk and disappointment aversion parameters are estimated.
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distribution a natural candidate. Furthermore, the parameters of the distribution can be estimated

via maximum likelihood as a linear function of some observables. Once the model is estimated, we

can test any specific point prediction (e.g., equilibrium predictions) with Wald tests.

Suppose a multivariate random variable yyy = (y1, . . . , yD) of dimension D ≥ 2, whose component

yk ∀k is a real valued random variable. We denote yyy ∼ Dir(ααα) when yyy follows a Dirichlet distribution

of parameters ααα. The probability density function of a Dirichlet distribution of parameters ααα is

given by

f(y1, . . . , yD;α1, . . . , αD) =
1

B(ααα)

D∏
k=1

yαk−1
k , (1)

where the vector ααα = (α1, . . . , αD) gives the concentration parameters shaping the distribution.

The normalizing constant B(ααα) =
∏d

k=1 Γ(αk)

Γ(
∑d

k=1 αk)
is the multivariate Beta distribution (the conjugate

prior of the binomial), which can be expressed using the Gamma distribution, Γ(.). This constant

ensures that function (1) results into a probability density function with total probability of one.

The Dirichlet distribution possesses the following properties. First, the support of the Dirichlet

distribution is the (D − 1)-dimensional simplex,

SD = {(y1, . . . , yD) |
∑
k

yk = 1, yk > 0 for k = 1, . . . ,D}. (2)

Second, when yyy ∼ Dir(ααα), the expected value of the element yk is given by the relative weight of the

concentration parameters associated to that element with respect to the sum of all the concentration

parameters, E [yk] =
αk
∆ , where ∆ =

∑D
k=1 αk. Thus, the interpretation of the marginal effect of

any concentration parameter has a direct interpretation – a change in the relative weights of each

element. Note that, because we are working in the simplex, an increase of one element necessarily

implies a decrease in the same proportion of at least one other element.

Finally, the variance of the element yk is also defined exclusively in terms of the concentration

parameters, V ar(yk) = αk(∆−αk)
∆2(∆+1)

. Thus, expected value and variance can be determined jointly

via the concentration parameters. One important aspect to notice is that larger concentration

parameters express a higher concentration around the expected value.

Figure 1 illustrates these properties by showing how the shape of the Dirichlet distribution changes

as their concentration parameters change. All these examples are in the 2-dimensional simplex.

In panels (a), (b), and (c), E [yk] = 1/3 ∀k. Thus, the distributions are centered at the vector

of expected values (13 ,
1
3 ,

1
3). The only difference between these three panels is the levels of the

5



concentration parameters – (0.95, 0.95, 0.95), (1, 1, 1) and (2, 2, 2) for panels (a), (b), and (c), re-

spectively. This change in level, which does not affect the expected value, decreases the variance

of each element. Thus, in panel (a), as ∆ < D, points far away from the vector of expected values

are assigned a higher probability than points closer to the mean. In panel (b), as ∆ = D, every

point in the simplex is assigned the same probability, which leads to the multivariate uniform dis-

tribution. In panel (c), as ∆ > D, points closer to the vector of expected values are assigned a

higher probability than points away from the mean. Unlike the previous panels, panel (d) shows

the distribution centered at (23 ,
1
6 ,

1
6) with a very small variance.

Figure 1: Examples of Dirichlet Distributions.

(a) (α1 = 0.95; α2 = 0.95; α3 = 0.95; ∆ = 2.85) (b) (α1 = 1; α2 = 1; α3 = 1; ∆ = 3)

(c) (α1 = 2; α2 = 2; α3 = 2; ∆ = 6) (d) (α1 = 20; α2 = 5; α3 = 5; ∆ = 30)

The objective is to analyze compositional datasets. Formally, a compositional dataset YYY with T
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observations is defined as follows YYY = (YYY 1, . . . ,YYY T ), where YtYtYt = (Yt1, . . . , YtD) ∈ SD. The unit of

observation could be a period, an individual, or both. In this paper, the generating process behind

this dataset is assumed to be a Dirichlet distribution, which includes the aforementioned properties.

The concentration parameters associated to a Dirichlet generating process can be conditioned on

a set of observed covariates, xxx = (x1, . . . , xc) ∈ Rc such that ααα(xxx) = (α1(xxx), . . . , αD(xxx)). Campbell

and Mosimann (1987) propose a linear function where αk(xxx) = xxxβββk with βββk being a (c× 1) vector

of estimated coefficients. Given a dataset of covariates XXX = (XXX1, . . . ,XXXT ), we need to estimate the

vector of parameters β̂̂β̂β = (β̂̂β̂β1, . . . , β̂̂β̂βD) subject to the constraint that every α̂k(XXXt) > 0.12 These

constrains ensure that D is the dimension of the simplex of the estimated model. Assuming that

the observations, {YYY 1, . . . ,YYY T }, are i.i.d. given βββ, the likelihood function for the observed sample

can be written as

L(βββ|XXX,YYY) =

T∏
t=1

[
Γ(

D∑
k=1

αk(XXXt))

D∏
k=1

Y
αk(XXXt)−1
tk

Γ(αk(XXXt))

]
.

The relevant parameters can be estimated via maximum likelihood estimation.13 Once this Dirichlet

Covariate Model is estimated, any theoretical point prediction, aaa∗, can be formally tested by using

Wald tests for composite hypotheses over α̂αα = (α̂1, . . . , α̂D). The lack of independence between

the estimated alphas prevent us from testing them separately. Thus, point predictions need to be

translated into joint hypotheses about the estimated alphas. In the simplex, there is clearly a one-

to-one correspondence between point predictions and composite hypotheses – e.g., the prediction

aaa∗ =
(
1
3 ,

1
3 ,

1
3

)
and the joint hypothesis α̂1 = α̂2 = α̂3; the prediction aaa∗ =

(
2
3 ,

1
3

)
and the joint

hypothesis α̂1 = 2α̂2.

Network models in the second wave describe settings producing compositional datasets. Thus, the

Dirichlet Covariate Model can be used to analyze these settings and test equilibrium predictions.

The only concern is that the support for the Dirichlet distribution is a proper subset of the strategy

spaces in these models (and the corresponding empirical observations). While the latter includes

the boundary of the simplex (i.e., some elements of the allocation vector might be zero), the former

requires a positive mass in every dimension – see expression (2). This problem also arises with the

log-ratio transformation method. In fact, we can apply any of the three solutions regularly applied

in that method. The first solution is to drop observations in the boundary. The second solution is
12Thus, the total number of parameters to be estimated is c×D.
13The estimated parameters in the maximization problem of the maximum likelihood estimation method are equiv-

alent to those of the minimization problem of the negative log transformation of the above likelihood expression.
As it is common practice, for computational purposes, we proceed with the minimization problem. Furthermore,
following Campbell and Mosimann (1987), we also transform αk(XXXt) with the log-link function g(.) in order to meet
the constraint that α̂k(XXXt) > 0.
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to perturbate boundary observations with an ϵ change such that the observation becomes interior.

The final solution is to transform the observation to a different space, by ”compressing” the data

in each dimension symmetrically around 1
D , producing biased but consistent estimators (further

details in Smithson and Verkuilen, 2006).

To illustrate the use of the Dirichlet Covariate model, we select a variation of one of the theoretical

models from the second wave and design a laboratory experiment implementing it. Although the

Dirichlet Covariate Model could also be used with naturally occurring data,14 we opted for such

experiment because, as mentioned in footnote 6, experimental work in exogenous weighted network

appears to be missing. In particular, to the best of our knowledge, none of the models in the second

wave has been tested.

3 Selected Model

A social structure comprises a finite set of agents N = {1, 2 . . . , n} and a set of connections B whose

elements are unordered pairs of agents. We can represent this structure with a graph G = (N,B). In

this graph, agent i is represented by a node and a connection between agents i and j is represented

by a link if and only if (ij) ∈ B. In our model of conflict, if i and j are linked, we say that i has

a conflict with their rival j. Every rival j of i belongs to the set of rivals, j ∈ Ni. The own-degree

(or degree) of agent i, di, is given by the cardinality of the set of rivals, di = |Ni|. At this point, we

notice three constraints. First, all conflicts between a pair of agents are summarized into a single

conflict (or lack of it), avoiding parallel links and multigraphs. Simply put, agent i cannot have

more than one conflict with agent j. Second, in the model, agents are excluded from being their

own rivals. Hence, G needs to be irreflexive (i.e., (ii) /∈ B). Finally, agents cannot ignore a conflict

ex ante.15 These mutual conflicts induce G to be undirected: if (ij) ∈ B, then (ji) ∈ B ∀i ̸= j.

In this social structure, every agent i is endowed with a budget wi > 0 of a uni-dimensional resource

(e.g., effort, money). Each agent simultaneously decides how to allocate their budget across their

conflicts, determined by the graph G. Any fraction of the budget not allocated is lost. Thus,

an agent’s pure strategy is given by an allocation vector si of dimension di, where the typical

element sij represents the allocation of agent i to their conflict with their rival j ∈ Ni, such that
14We are unaware of such datasets. By proposing this method, we hope to encourage others to collect such datasets

and use the Dirichlet Covariate Method for their analysis.
15However, this does not prevent agents from “ignoring” a conflict ex-post by allocating no resources to a particular

conflict, while their rival allocates a positive amount. While this is possible in the general model, the focus of this
paper is on parameters inducing interior optimal allocations.
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∑
j∈Ni

sij = wi. For the rest of the paper, this allocation vector is normalized with respect to

the budget (i.e., aij =
sij
wi

). Thus, we obtain a sum-unit vector ai, such that
∑

j∈Ni
aij = 1 and

aij ≥ 0. This normalization does not affect the optimal strategy but will allow the use of the

Dirichlet distribution in the empirical analysis.

The value associated to winning the conflict in which agents i and j are involved is vij and the

value associated to losing the conflict is normalized to 0. We assume that every pair of rivals, i and

j, agree on the value of their conflict, i.e., vij = vji, and that these values are common knowledge

in the social structure. Furthermore, let vih = max{vij |j ∈ Ni} be agent i’s most valued conflict

and vil = min{vij |j ∈ Ni} be agent i’s least valued conflict.

The winner of each conflict is determined by a lottery contest success function (Tullock, 1980) such

that the relative probability of agent i winning the conflict against agent j is given by:

pij =


aij

aij+aji
if (aij + aji) ̸= 0

1
2 if aij = aji = 0.

Then, the objective of every agent i is to maximize the sum of the values of the conflicts won. Thus,

each agent i is facing the following di dimensional constrained maximization problem.

max
ai

πi(aaai, aaa−i,G) =
∑
j∈Ni

vijpij subject to
∑
j∈Ni

aij = 1

Now, we claim.

Proposition 1. In this setting, there exists a unique interior equilibrium in pure strategies if

vil
vih

>
1

4
, ∀i ∈ N

The proof appears in Appendix A.1 (see Franke and Öztürk, 2015; Cortés-Corrales and Gorny,

2018, for results in similar games with convex cost functions).

In this paper, we focus on sets of parameters where the condition of Proposition 1 applies and the

equilibrium is unique, interior and in pure strategies. The next step is to address issues about the

characterization of this equilibrium. For that, we define first a path in a network G.
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Definition. A path in a network G between agents u and v is a finite sequence of connections

{i1i2, . . . , ik−1ik} and a set of distinct agents {i1, . . . , ik} such that every imim+1 ∈ B for each

m ∈ {1, . . . , k − 1}, with i1 = u and ik = v.

In this game, the optimal allocation of agent i to the conflict with agent j depends on the allocation

of agent j, which, at the same time, depends on the allocations of the other agents connected to j,

which, in turn, depend on the allocation of subsequent agents connected to agents connected to j

and so on. This interdependence of the best-responses between players in the network is determined

by the different paths. Given the contest success function, this interdependence is non-linear and it

is determined by the length of the paths in the network. The relationship between characterization

of equilibrium and length of the path is expressed in the following Proposition.

Proposition 2. A generic explicit characterization of the equilibrium, using algebraic operations

and roots of natural degrees, does not exist if there is a path of length equal or higher than 3 in the

network.

The proof appears in Appendix A.2. In the proof, we show that when there exists a path of length

three, in general, finding the equilibrium can be reduced to solving a general (and irreducible)

polynomial of degree 8. Longer paths lead to general polynomials of higher degree. However,

according to the Abel-Ruffini Theorem, this class of polynomials cannot be solved using radicals.

Therefore, the equilibrium characterization using algebraic operations and roots of natural degrees

is not possible in general. Notice that other elements of the network topology, including the different

measures of centrality, are not necessary to reach this result.

We should make clear, however, that Proposition 2 does not preclude from finding the charac-

terization of a solution in particular cases. In fact, certain symmetries in the topology, and the

distribution of conflict values allow the polynomial to be further simplified (e.g., into quadratic poly-

nomials), providing solutions for particular cases. For example, in q-regular networks, where every

agent has the same q ∈ {2, ..., n − 1} numbers of conflicts (i.e., di = q ∀i ∈ N), if
∑

j∈Ni
vij = V̄

for every i ∈ N , the equilibrium allocation by agent i to conflict j is given by a∗ij =
vij
V̄

(see proof

in Appendix A.2).

Whenever such simplifications are not possible, one shall resort to computational methods. In

particular, for the rest of the paper, we use the Newton-Raphson algorithm to find the roots of

the polynomials resulting from the set of first order conditions of every player in every conflict.
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This method uses a sequences of tangent lines to approximate the roots of the polynomial. A pre-

specified level of tolerance determines when the algorithm is close enough and should stop. Most

popular statistical packages will allow a maximum tolerance of 10−12 for the Newton-Raphson

algorithm.

Consequently, the fact that computers as well as any human (and not only experimental subjects)

need to accept a level of error when choosing a strategy appears to be an inescapable truth in our

setting.

4 Experiment

4.1 Experimental Games and Treatments

Our experimental games use the same structure as the games described in the previous section.

When implementing these experimental games, we include the following two restrictions common to

all treatments. The first common restriction is that every participant is endowed with wi = w = 100

tokens, which participants need to allocate to different conflicts. By normalizing this endowment

to 100, the relative share of the endowment allocated by participant i to conflict j, aij , is easy to

calculate. The second common restriction is that the number of participants is always n = 4. This

is the smallest number of participants ensuring that there exists a path of length 3 in the networks

of our experimental games and, consequently, Proposition 2 is satisfied.

In addition to these common restrictions, our experiment uses various restrictions on the network

structure and the values of the conflicts to create the different experimental treatments. We present

first the treatments arising from the variation in the network structure. In our experiment, we

consider the four connected networks shown in Figure 2: Complete, Ring, Diagonal and Line.

Each network contains four nodes, representing the participants, and the corresponding links,

representing the implemented conflicts between participants. As observed in Figure 2, the degree

of a participant can be either 1, 2 or 3, depending on the network and position. In this experiment,

we focus on participants with degree 2 (Degree 2 treatment) and degree 3 (Degree 3 treatment)

because participants with degree 1 have no strategic decision to make.16 By increasing the degree

of the participants, our experimental treatments can compare, other things equal, how the size of

the strategy space affects strategic choices in networks.
16In our experiment, they are simply required to submit their whole endowment to the only conflict available to

them. Further details in section 4.2.
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So far, degree is the main observable characteristic of participants in the network. If this character-

istic is taken as an induced type, the second set of treatments refer to the changes in the distribution

of the types within a network. In the top row of Figure 2, the only two q-regular networks with

four participants are shown (the Complete and the Ring). In these networks, all participants are

induced the same type, either degree 2 or degree 3 (Identical Treatment). The bottom row includes

the Diagonal and the Line, which are created by removing a link from the Complete and the Ring,

respectively.17 In these two network, there is diversity of types (Diverse Treatment). Participants

in the Diagonal have either degree 2 or 3 and participants in the Line have either degree 1 or 2.

Equilibrium play and best-responses become computationally more difficult in the presence of

diversity of types than in its absence. As shown in Proposition 2, best-responses depend on the

paths in the network, connecting a player with any other players.18 Thus, all connected types affect

a player’s best response and, consequently, the resulting equilibrium. In Identical treatments,

all types are the same and it turns out that simple heuristics (e.g., splitting your endowment

equally across conflicts, aij = w
di
, or proportional allocations with respect to the relative values,

aij = w
aij∑

j∈Ni
aij

) are observationally equivalent to equilibrium play (see Table 1). This is not

the case in Diversity treatments where equilibrium produces predictions, which do not seem to

be equivalent to any obvious heuristic. Since the construction of the best-responses in our model

appears to be independent of other elements of the network (for example, measures of centrality),

we abstract from such elements in the experiment for the remainder of the paper.19

Finally, the last variation of our experimental design refers to changes in the values of the conflicts.

In particular, we have two treatments: Homogeneous treatment and Heterogeneous treatment. Fig-

ure 2 shows the number of points associated to each conflict in the two treatments. In each link, the

number to the left and to the right refers to the value in the Homogeneous and the Heterogeneous
17In addition, there are two other networks in the set of connected non-isomorphic networks with four nodes: the

Star and the Kite. In the Star network, only one out of four participants can exhibit strategic considerations while
the other participants should trivially allocate their budget to their only conflict. The Kite network is the only
non-isomorphic network of four participants with three types, making comparison with the other networks relatively
more difficult.

18Against Proposition 2, one could assume that participants lack complete information in the experiment and
only consider their degree or paths of length 1 (see Charness et al., 2014, for the use of incomplete information
in networks). In this case, the definitions of the Identical and the Diverse treatments would have slightly different
implications. For example, participants 1 and 3 in the Diagonal would be included in the Identical treatment rather
than the Diverse treatment because both their immediate rivals are of the same type. We checked how robust the
results of our preferred (treatment) definitions (presented in section 5) are in the face of these alternative definitions
(presented in the Online Appendix). The results of our preferred definitions are similar but more conservative (i.e.,
fewer treatments are significant) than alternative definitions.

19In addition to best-responding to equilibrium actions, the Online Appendix also includes the possibility that
participants best-respond to the empirical distribution and just to the past observed play. Furthermore, we relax the
assumption of best-responses and analyze the use of simple decision rules related to the structure of the network.
The results presented in this paper are robust to these alternative benchmarks.
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Figure 2: Selected Networks (Homogeneous/Heterogeneous values).
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treatment, respectively. In the Homogeneous treatment, every conflict in every network is worth

the same number of points, vij = 600 ∀i, j. Thus, every rival and the associated conflict is only

distinguishable in terms of the changes in the network structure described so far.

For any given network, the Heterogeneous treatment introduces differences in the number of points

across conflicts. A different number is drawn for each conflict of a participant from the following

set vij = {300, 550, 600, 900, 1200} such that, in every network, the highest number of points for a

participant is not larger than four times their lowest number. By doing so, Proposition 1 is satisfied

and every weighted network contains an interior equilibrium, different from the equilibrium in the

Homogeneous treatment (see Section 4.3). Thus, in the Heterogeneous treatment, participants

might not only face a larger strategy space, and diversity of types but also a different weight for

each conflict, which would make calculations even more complicated.
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4.2 Implementation of the Experimental Design

In an experimental session, each participant is allocated at random to one node and network. This

allocation remains the same throughout the experiment, imposing a partner matching. At the

beginning of the experiment, instructions are read aloud (a copy can be found in Appendix B.1).

In the instructions, participants are told that there are two stages and that they only receive specific

information about the second stage (Heterogeneous treatment) once the first stage (Homogeneous

treatment) is finished. In each stage, participants play 20 rounds of the experimental game described

above and feedback is provided between rounds.20 At the end of the experiment one round per

stage is selected at random for payment.

Participants face interfaces adjusted to their degree, created with z-Tree Fischbacher (2007) –

screenshots of the corresponding interfaces appear in Appendix B.2. In particular, participants of

degree 3 face a simplex of dimension 2 (represented by an equilateral triangle), where every point

in the simplex represent a feasible allocation exhausting their budget; and each vertex represents

a full allocation to one conflict.21 Similarly, participants of degree 2 face a simplex of dimension

1 (represented by a slider). Finally, participants of degree 1 have no strategic role and are simply

required to type 100 (i.e., their whole budget). All these interfaces force participants to exhaust

their budget in each round and, therefore, strictly dominated strategies (not exhausting the budget)

are ruled out as explanations for deviations from equilibrium predictions.

At the beginning of each round, a random point appears in the simplex of dimension 1 and 2. To

choose an allocation, participants click on the point, drag it towards a new allocation and unclick it

when they reach the allocation. They can relocate the point as many times as they wish. In addition

to the graphical representation of the simplex, participants can see the number of tokens allocated

to each conflict, which is updated every time participants select a new point in the simplex. To

control for any possible order effects, the position of the vertices of the triangle and the slider are

independently randomized in each round across participants.

The experiment was conducted at the Leicester EXperimental ECONomics (LExEcon) laboratory

at the University of Leicester. Once participants arrived to the laboratory, they were seated at an

individual computer workstation. A total of 236 participants drawn from the common participant

pool participated in one of sixteen sessions. In the experiment, the exchange rate was £1 for every
20The equilibrium of this finitely repeated game is, effectively, playing, in each round, the stage equilibrium pre-

sented in Table 1.
21The granularity of this allocation is .1, which translates into a granularity of .001 when referring to the relative

shares.
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100 points. On average each session lasted about 80 minutes with an average payment of £16.1

(including £2 show-up fee).

4.3 Predictions

4.3.1 Equilibrium Predictions

The impossibility of expressing the equilibrium in general requires a level of tolerance to be assumed.

For presentation purposes, the equilibrium predictions in terms of relative shares are rounded to

.001. To compare predictions for individual participants within and across networks, isomorphic

decision problems within a network are collapsed together by redefining relative allocation shares,

ai1, ai2, and ai3 for i = {1, 2, 3, 4}, such that a) ai1 and ai2 appear in every network, and ai3 in

the Complete and Diagonal network, and b) ai1 corresponds to the highest valued conflict, vih, in

the Heterogeneous treatment, and ai2 (or ai3 if it exists) corresponds to the lowest valued conflict,

vil.22

The corresponding predictions appear in Table 1. In Table 1, the left and the right column show the

predictions in the Homogeneous and the Heterogeneous treatments, respectively; while each row

represents a network. The row corresponding to the Diagonal network has two entries to distinguish

participants with degree 2 (i = {1, 3}) and degree 3 (i = {2, 4}). Similarly, the row corresponding

to the Line network also has two entries in the Heterogeneous column for participants i = {2} and

i = {3} because of the different predictions in the Heterogeneous treatment.

4.3.2 Deviations from Equilibrium in Weighted Networks

Our experiment can establish to what extent lack of support for equilibrium, which has been

reported in unweighted networks, also extends to weighted networks. In our experiment, the null

hypotheses of equilibrium predictions are summarized in Table 1. The alternative hypothesis is

summarized as follows.
22More concretely, we redefine the allocations shares as follows. In every network, ai1 is the share that participant

1, 2, 3 and 4 allocates to the conflict with participant 4, 3, 2 and 1, respectively. ai2 is the share that participant 1,
2, 3 and 4 allocates to the conflict with participant 2, 1, 4 and 3, respectively. And, ai3 is the share that participant
1, 2, 3 and 4 allocates to the conflict with participant 3, 4, 1 and 2, respectively. In a slight abuse of notation for the
Line network in the Heterogeneous treatment, let ai1 is the share that participant 2 and 3 allocates to the conflict
with participants 1 and 2, respectively. And ai2 is the share that participant 2 and 3 allocates to the conflict with
participants 3 and 4, respectively.
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Table 1: Nash Equilibrium Predicted Relative Share

Homogeneous Heterogeneous

Ring (0.50,0.50) (0.75,0.25)

Complete (0.333,0.333,0.333) (0.500,0.333,0.167)

Line
i = {2}

(0.535,0.465)
(0.672,0.328)

i = {3} (0.544,0.456)

Diagonal
i = {1, 3} (0.50,0.50) (0.60,0.40)
i = {2, 4} (0.328,0.328,0.343) (0.499,0.332,0.166)

In a cell, the vector (a∗i1, a∗i2) and (a∗i1, a∗i2, a∗i3) corresponds to the relative shares
of degree 2 and 3 participants, respectively.

Hypothesis 1 (Deviations from Equilibrium). There are deviations from equilibrium in weighted

networks.

Rejecting the null hypothesis in favor of Hypothesis 1 opens the door to study which aspects of the

network topology affect deviations from equilibrium. Our experimental design assigns subjects to

nodes and networks randomly. This exogeneous variation addresses concerns of endogeneity, where

the same individual characteristics affecting the position in a network can also affect choices.23

In particular, we focus on two aspects of the deviations: individual frequency and size. Comparing

frequencies of deviations across networks is straightforward because, in every network, equilibrium

predicts a frequency of zero deviations. In terms of size, we measure deviations by the Euclidian

distance between the actual choices and the unique equilibrium predictions, Daiaiai,a
∗
ia
∗
ia
∗
i
= ∥ai − a∗

i ∥ =√∑di
j=1

(
aij − a∗ij

)2
. Notice that the highest possible deviation for participants of degree 2 and

3 are equal to
√
2, allowing deviations in both cases to be compared within and across networks

because Daiaiai,a
∗
ia
∗
ia
∗
i
∈
[
0,
√
2
]
for all treatments of the experiment.

With these comparable measures of deviations across networks, we can state more precise hypothe-

ses about how the elements of the network structure affect behavior. In particular, our experimental

design varies the degree of the participants, the diversity of types and the heterogeneity of the values

of the conflicts. Thus, the three main hypotheses follow:
23For example, there exists evidence that biological traits as sex or levels of testosterone and cortisol affect position

in networks (e.g. Ponzi et al., 2016; Kovářík et al., 2017) as well as preferences for competition (e.g. Gneezy and
Rustichini, 2004; Niederle and Vesterlund, 2011). With naturally occurring data, one way to address this endogeneity
problem is to introduce plausible instrumental variables (e.g., Acemoglu et al., 2015; König et al., 2017). However, even
when endogeneity is addressed this way, a second concern is that the instrument might, nevertheless, fail to provide
enough network topology variation to investigate its influence on behavior. While our experiment is restricted to four
participant networks, the selection of our treatments provides almost exhaustive variation in the network topology
of four participants.
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Hypothesis 2 (Deviations due to larger strategy space). An increase in degree leads to larger

deviations from equilibrium play.

Hypothesis 3 (Deviations due to diversity of types). An increase in the diversity of types leads

to larger deviations from equilibrium play.

Hypothesis 4 (Deviations due to heterogeneity of values). An increase in the heterogeneity of

values leads to larger deviations from equilibrium play.

5 Results

5.1 Data Overview

Our variable of interest is the vector of allocation shares, aaai. Some features of the experimental

design and the layout can potentially lead to order effects and framing effects, confounding this

variable. To evaluate order effects, we test if the observed vectors of allocation shares depend on

the position of the vertex assigned to each conflict in the decision interface. Results from Friedman

tests suggest in every treatment that there are no order effects (see Appendix C for further details).

To evaluate framing effects, the mean allocation shares of subjects assigned to the same position

in the network is pooled; we test if the vector of mean allocation shares is the same across different

positions, which are facing an isomorphic decision problem – for example, is the vector of average

allocation shares by participants in position 1 in the complete network in the homogeneous the same

as those in position 2, 3 and 4? The p-values of the associated Friedman tests are not significant

at 5% in every case but two: complete and ring network in the heterogeneous treatment.24

Given this lack of evidence, we abstract from these potential confounds when reporting the ex-

perimental results throughout the paper. For each treatment, the summary statistics are pre-

sented in the sub-column “All Rounds” of Table 2 – the vector of sample mean allocations

shares, ā̄āai = (āi1, . . . , ā(i|Ni|)), the vector of the standard deviations for each allocation share,

(sd(ai1), . . . , sd(a(i|Ni|))), and the number of observation. We also present these statistics for the

first 10 rounds of each treatment, under the sub-column “Rounds 1-10”.
24These tests include few observations and their negative results raise questions about power. Alternatively, for each

isomorphic conflict in a network, one could test if the mean allocation share is the same across participants assigned
to different positions in the network (1, 2, 3, 4) in a systematic manner. These tests include more observations but
present a multiple hypotheses testing problem. The corresponding results show no significant effects in every conflict
even if Bonferroni corrections are applied (see Appendix C for further details).
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Table 2: Summary Statistics

Homogeneous Heterogeneous
Rounds 1-10 All Rounds Rounds 1-10 All Rounds

Ring
Mean (0.519,0.480) (0.508,0.492) (0.680,0.319) (0.697,0.303)

sd (0.212, 0.212) (0.216, 0.216) (0.225, 0.225) (0.227, 0.227)

#Obs 320 640 320 640

Complete
Mean (0.332,0.335,0.332) (0.333,0.324,0.341) (0.488,0.311,0.199) (0.508,0.297,0.193)

sd (0.187, 0.168, 0.176) (0.174, 0.159, 0.177) (0.202, 0.139, 0.153) (0.210, 0.138, 0.147)

#Obs 320 640 320 640

Line

i = {2}
(0.636,0.363) (0.629,0.370)

Mean (0.547, 0.452) (0.574, 0.425) (0.292, 0.292) (0.289, 0.289)

sd (0.279, 0.279) (0.276, 0.276) 270 540

i = {3}

#Obs 540 1080 (0.617,0.382) (0.612,00.387)
(0.266, 0.266) (0.261, 0.261)

270 540

Diagonal

i = {1, 3}
Mean (0.475,0.524) (0.487,0.512) (0.592,0.407) (0.591,0.408)

sd (0.193, 0.193) (0.189, 0.189) (0.192, 0.192) (0.193, 0.193)

#Obs 320 640 320 640

i = {2, 4}
Mean (0.326,0.320,0.352) (0.335,0.301,0.362) (0.502,0.312,0.185) (0.518,0.297,0.183)

sd (0.162, 0.163, 0.175) (0.158, 0.161, 0.179) (0.230, 0.178, 0.137) (0.221, 0.173, 0.135)

#Obs 320 640 320 640

The unit of observation is the vector of allocation shares by participant i in period t, aaati.

The summary statistics show variations across the different treatments. For example, the intro-

duction of the Heterogeneous values (such that v1 > v2 > v3) shifts the participants’ allocation

shares in line with the value of the conflicts – i.e., āi1 > āi2 > āi3. In contrast, when comparing

the entries in “Rounds 1-10” and the corresponding entries in “All Rounds”, the mean allocation

shares exhibit almost no variation within each treatment. This pattern in the data suggests that

the change in participants’ choices across time is exclusively due to incentives of the Heterogeneous

treatment and not time trends (such as those expected if, for example, participants were learning).

To formally investigate potential time trends within a treatment, we compare the distributions of

the within-subject average allocation shares for each conflict in the first and last 10 rounds. The

associated p-values of the Wilcoxon signed rank tests are not significant at the 5% significance in

every case.25

25While there is some evidence of learning in networks (e.g., Choi, 2012), multibattle contests with a Tullock contest
success function in simpler experiments, without a network structure, also report a similar absence of time trends
(see, for example, Dechenaux et al., 2015; Chowdhury et al., 2016). Similar results are obtained using a parametric
analysis with the Dirichlet Covariate Model. Analysis is available upon request.
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5.2 Equilibrium Test

For each network and degree, we estimate a Dirichlet Covariate Model, controlling for the hetero-

geneous treatment variable and session fix effects. In addition, given the lack of time trends, we

focus on the within-subject average allocation share and, to account for participants only interact-

ing within a specific network, we cluster the standard errors at the network level. Table 3 shows

the vector of estimated mean allocation shares for each treatment, and the corresponding vector of

estimated variances – a more detailed report of the Dirichlet Covariate Model results appears in

Appendix E.1. In addition, Table 3 also includes the results of the non-linear Wald tests for the

composite hypotheses associated to Table 1.

Table 3: Estimated Mean Allocation Shares and Variances

Homogeneous Heterogeneous

Ring
(0.499,0.501) (0.686,0.324)***
(0.001,0.001) (0.009,0.009)

Complete
(0.310,0.336,0.354)*** (0.510,0.316,0.174)

(0.003,0.003,0.003) (0.013,0.015,0.009)

Line
i = {2} (0.51,0.49)**

(0.547,0.453)**
(0.009,0.009)

i = {3} (0.002,0.002) (0.538,0.462)***
(0.005,0.005)

Diagonal
i = {1, 3} (0.510,0.490) (0.622,0.378)

(0.002,0.002) (0.009,0.009)

i = {2, 4} (0.252,0.363,0.386)*** (0.366,0.368,0.266)***
(0.002,0.002,0.002) (0.029,0.029,0.025)

In a cell, the vector (â∗i1, â∗i2) and (â∗i1, â∗i2, â∗i3) corresponds to the estimated relative shares
of degree 2 and 3 participants, respectively. We present the results of the non-linear Wald
test using *** for p<0.01, ** for p<0.05 and * for p<0.1.

The unique interior equilibrium in pure strategies is rejected in 7 out of 11 instances at the 5%

significance level.26 At first sight, results in Table 3 suggest that Degree 3 treatments are more

likely to present a rejection than Degree 2 treatments. Other treatments present less clear pat-

terns. However, before presenting a more formal analysis about how the different treatments affect

deviations from equilibrium, we explore the possibility that these rejections are mainly the result

of few participants with extreme deviations – rather than widespread deviations.
26One could ask how the results from the Dirichlet Covariate Model, imposing a negative correlation across conflicts,

compare with those from more popular methods, such as Ordinary Least Square (OLS), imposing independence across
conflicts, instead. The results of the OLS are presented in Appendix E.2. Although the number of instances that we
reject the equilibrium prediction is the same (i.e., 7), the pattern of rejections is completely different. In fact, the
same conclusion is only reached in 3 instances.
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For that, a similar Dirichlet Covariate Model is estimated for each individual separately.27 Table

4 shows the percentage of participants, in each treatment, for which the equilibrium prediction

is rejected at the 5% significance level. For example, the equilibrium prediction in the complete

network is rejected for 21.8% of the participants in the Homogeneous treatment and 62.5% in the

Heterogeneous treatment.

Table 4: Percentage of Rejections

Homogeneous Heterogeneous

Ring 3.1% 71.8%

Complete 21.8% 62.5%

Line
i = {2}

24%
59.2%

i = {3} 44.4%

Diagonal
i = {1, 3} 31.2% 37.5%
i = {2, 4} 37.5% 71.8%

The percentage of participants for which the Nash equilibrium prediction is rejected indicates

that deviations from equilibrium are a widespread phenomenon among our participants. In fact,

the percentage is always higher than 20%, except in one treatment (the Ring network in the

Homogeneous treatment). Furthermore, the percentage of rejection increases substantially when

we compare a Homogeneous treatment with the corresponding Heterogeneous treatment. Other

patterns are less clear. Results presented in Tables 3 and 4 can be summarized in the following

result in relationship to Hypothesis 1.

Result 1. There are significant and frequent deviations from the Nash equilibrium in weighted

networks.
27Only 5.24% of the observed decision in our experiment are non-interior allocations, which are spread across

participants. Remember that the Dirichlet Covariate Model only accept interior allocations. Consequently, to deal
with this problem, we adopt the second method described in Section 2. Similarly to Choi et al. (2007), an allocation
aij = 0 is perturbed to aij = ϵ = 10−4, while the remaining allocations are reduced by ϵ

D−1
. When di > 2 and we

observe a decision such that aij = 1 and aik = 0 ∀k ̸= j, aij is perturbed to aij = 1− ϵ while the other allocations,
aik are increased by ϵ

D−1
. This happens in 0.2% of our observations. In our case, the frequency of non-interior

allocations is also informative about the extent to which risk aversion affects our results. It is plausible that risk
averse participants select non-interior allocations in order to win a proper subset of conflicts. This effect should be
more pronounced in the heterogeneous treatments where these participants would allocate resources to the highest
valued conflicts. Only 56.29% of the non-interior allocations appear in a heterogeneous treatment; from this, 54.41%
assign a zero allocation to the lowest valued conflict.
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5.3 Sources of Deviations from Equilibrium

Result 1 establishes that the deviations from equilibrium reported in unweighted networks also

extend to weighted networks. In addition, the combinations of treatments assigned to participants

exogenously also permits an identification of the causal effect on those deviations by the elements

of the structure of the network that our designed varies.

Formally, we measure deviations by the Euclidian distance Daiaiai,a
∗
ia
∗
ia
∗
i
. Then, we can estimate a Gen-

eralized Linear Square random effects model where Daiaiai,a
∗
ia
∗
ia
∗
i
is regressed on a dummy for each of the

treatments: Degree 3, Diverse, and Heterogeneous, taking value 1 if participant is assigned to a

particular treatment and 0 otherwise; and the corresponding interactions between treatments. As

before, we include session fix effects and cluster standard errors at the network level.

Figure 3 depicts the conditional estimated marginal effects of each treatment as well as the cor-

responding 95% confidence interval.28 Thus, the results of the test of the remaining hypotheses

can be visualized. First, the significance of the marginal effect of degree can be observed by com-

paring the bars in the left panel (Degree 2 treatments) and the corresponding bars in the right

panel (Degree 3 treatments). Second, within each panel, the significance of the marginal effect

of the diversity of degrees can be observed by comparing the left sub-panel (Identical treatments)

and right sub-panel (Diverse treatments). Finally, within each sub-panel, the significance of the

marginal effect of heterogeneity of values can be observed by comparing the blue bar (Homogeneous

treatments) and the red bar (Heterogeneous treatments). If a bar is outside the confidence interval

of the corresponding comparison, the marginal effect is significant at the 5% significance level.

Results in Figure 3 show that the only significant treatment is degree. When comparing Degree

2 and Degree 3 treatments, we observe a significant effect for all comparisons. More concretely,

deviations from equilibrium increases by 0.07 in absolute terms, which, depending on the specific

comparison, represents a relative increment between 35% and 43.75%. The Diverse treatment,

and Heterogeneous treatment have the same relative effect (incrementing deviations between 8%

to 12.5%). However, these effects are not statistically significant. Thus, we obtain the following

results for the main hypotheses.

Result 2. In line with Hypothesis 2, an increase in degree does lead to larger deviations from

equilibrium play.
28Full report of estimates appear in Appendix F.1.
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Figure 3: Conditional Estimated Margins.
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Result 3. Contrary to Hypothesis 3, an increase in the diversity of types does not lead to larger

deviations from equilibrium play.

Result 4. Contrary to Hypothesis 4, an increase in the heterogeneity of values does not lead to

larger deviations from equilibrium play.

6 Discussion

This paper proposes to use the Dirichlet Covariate model to empirically analyze the compositional

data emerging from settings in which an individual needs to allocate some resources across dif-

ferent connections with other individuals. By using this method, point predictions of a growing

literature of models with weighted networks and link-specific actions can now be tested, building

on the current analysis of unweighted networks. This method is also able to recover and provide a

meaningful interpretation of the estimated marginal effects – unlike the log-ratio transformation.

To illustrate this method, we report evidence from a novel experimental design implementing a
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variation of one of the aforementioned models (Franke and Öztürk, 2015). In this illustration,

we present the results of testing the payoff maximizing equilibrium predictions – the results of

other point predictions could also be obtained using the same method.29 These results show that

deviations from this equilibrium are significant and frequent in weighted networks (Result 1). This

results extend current evidence in unweighted networks, which would appear impossible without

our method.

From a behavioral point, one interesting aspect of our experiment is that, while the equilibrium

prediction is unique, interior, and in pure strategies, avoiding some sources of deviations in simpler

games, the equilibrium cannot be, in general, characterized using radicals. So, not only our partic-

ipants but game theorists (and even computers) need to tolerate some deviation. Furthermore, the

experimental design allows the effects of some important aspects of the network structure on the

deviations from equilibrium to be studied. In particular, we find that a larger degree increases devi-

ations from equilibrium significantly (Results 2-4). The structure of the network in our experiment

is exogenous but these results have implications for endogenous network formation. Individuals

need to decide to what extent an equilibrium with more connections compensates the deviations

that would emerge by those additional connections. Variations in this trade-off could potentially

explain reported deviations in experiments with endogenous network formation (see Choi et al.,

2016; Kovářík et al., 2018).

29In fact, point predictions by heuristics are plausible in these settings. For example, participants could focus only
on degree and split their budget equally among all conflicts. Another example, if participants recognize degree and
the asymmetry of the values, they could allocate their budget in proportion to the value of the conflict with respect
to the total sum of conflict values. Deviations from the point predictions are significant. Analysis is available upon
request.
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Appendix

A Proofs

A.1 Existence of an unique interior Nash Equilibrium in pure strategies

This proof has two steps. First, we establish that our game satisfy the sufficient conditions for a

unique equilibrium in pure strategies. This first step follows Rosen (1965) and Goodman (1980)

and requires an interior equilibrium to be assumed. Second, we provide sufficient conditions for the

equilibrium of the game to be interior.

Step 1: Theorems 1 and 2 in Rosen (1965) prove that, for a unique equilibrium in pure strategies to

exist in a N -person concave game, it is sufficient that the joint payoff function σ(aaa,rrr) =
∑

i∈N riπi,

where aaa = (a1a1a1, ..., aNaNaN ) and rrr = (r1r1r1, ..., rNrNrN ), is diagonally strictly concave. However, before defining

the property of diagonally strictly concave, in order to apply these theorems, the payoff function

of every player i, πi and the strategy set of each player i, aiaiai, needs to satisfy certain properties.

It is immediate that, in our game, the strategy set of each player aiaiai is convex and compact; and

the strategy sets of the players are orthogonal. Also, in our game, the payoff function of player i is

concave in his own strategy (see Claim 1 below); but not continuous. More specifically, this payoff

function has a discontinuity – i.e., whenever aij = aji = 0, the contest success function “jump” to 1
2

and, consequently, the payoff function of player i is dicontinuous at that point. To circumvent this

problem, we modify the Tullock contest success function following Myerson and Wärneryd (2006):

p̃ij =
aij + δ

aij + aji + 2δ
.

The resulting payoff function of player i including p̃ij is continuous; in the limit δ → 0, this function

p̃ij coincides with pij at every point

lim
δ→0

p̃ij = lim
δ→0

aij + δ

aij + aji + 2δ
= pij

Thus, in the limit, when δ → 0, the first order conditions and equilibrium results should be the same

for games using either contest success functions, pij or p̃ij , and their corresponding payoff functions.

Once continuity is satisfied with the transformed game, regular properties of differentiability are

also met.
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In addition to these properties satisfied by our modified game using p̃ij , Rosen (1965) restrict his

attention to strictly interior equilibrium (p.523). Goodman (1980) shows the property diagonally

strictly concavity is implied by the following three properties:

i) πi(ai,a−i,G) is strictly concave in ai for all a−i,

ii) πi(ai,a−i,G) is convex in a−i for all ai,

iii) ρ(a, r) =
∑

i∈N riπi(ai,a−i,G) is concave in ai for some r with ri > 0 for all i ∈ N ;

We verify that these properties are satisfied in our modified game:

Claim 1: πi(ai,a−i,G)) is strictly concave in ai for all a−i.

Consider the Hessian matrix of πi(ai,a−i,G) with respect to player i’s profile strategy. In the

diagonal of this matrix we have ∂2πi(ai,a−i,G)
∂a2ij

= vij
−2aji

(aij + aji)3
< 0 and in the off-diagonal entries

we have ∂2πi(ai,a−i,G)
∂aij∂aik

= 0 for every k ̸= j ∈ Ni due to the mutually statistically independence

between conflicts. Therefore, the Hessian matrix is negative definite and, consequently, πi(ai,a−i,G)

is strictly concave in ai for all a−i.

Claim 2: πi(ai,a−i,G) is convex in a−i for all ai.

Consider the Hessian matrix of πi(ai,a−i,G) with respect to player j’s profile strategy. In the

diagonal of this matrix we have ∂2πi(ai,a−i,G)
∂a2ji

= vij
2aij

(aij + aji)3
> 0 or ∂2πi(ai,a−i,G)

∂a2ki
= 0

and in the off-diagonal entries we have ∂2πi(ai,a−i,G)
∂aji∂aki

= 0, for all k ̸= j ∈ N . This implies

that the Hessian matrix of πi(ai,a−i,G) respect to player j’s action is positive semi-definite and,

consequently, πi(ai,a−i,G) is convex in a−i for all ai.

Claim 3: ρ(a, r) =
∑

i∈N riπi(ai,a−i,G) is concave in ai for some r with ri > 0 for all i ∈ N .

In our modified game, ρ(a, r) =
∑

i∈N ri
∑

j∈Ni
vij

aij+δ
aij+aji+2δ . Consider the same ri for each player,

then ρ(a, r) = r
∑

i∈N
∑

j∈Ni
vij p̃ij . As p̃ik = 1 − p̃ki, the double summation will translate into a

set of summation of the type vij p̃ij + vjip̃ji = vij ∀(ij) ∈ B. Therefore, for ri = r for all i ∈ N ,

ρ(a, r) = r
∑

(ij)∈B vij so ρ(a, r) is a constant and, consequently, concave in ai.

Thus, if the optimal is interior, then, there exists a unique equilibrium in pure strategies.
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Step 2: By contradiction, we show that vih
vil

> 1
4 is sufficient for the optimal to be interior (aij >

0 ∀i ∈ N, j ∈ Ni).

Assume that if vih
vil

> 1
4 , then, for player i, a∗ij = 0 for conflict (ij) and a∗ik > 0 ∀k ̸= j. We show

this extreme case but it is immediate that the same argument and conditions hold for every set of

players and conflicts such that their optimal allocation is assumed to be 0.

In the assumed equilibrium, it should be the case that

∂π(aaai, aaa−i, G)

∂aih
=

∂π(aaai, aaa−i, G)

∂aik
>

∂π(aaai, aaa−i, G)

∂aij
∀k ̸= j.

For now, we focus on the first and last term and, taking into account the assumption that aij = 0,

we get
vihahi

(aih + ahi)2
>

vij
aji

⇒ ajiahi
(aih + ahi)2

>
vij
vih

.

Notice that the assumption vil
vih

>
1

4
implies vij

vih
>

1

4
. Therefore,

ajiahi
(aih + ahi)2

>
1

4
. (3)

When a∗ij = 0, player j has an incentive to choose a∗ji = ϵ to win conflict (ij) with limδ→0 p̃ji = 1

while reducing only marginally the probability of winning any conflict (jk) ∈ B, where k ̸= i.

ϵ denotes usually an arbitrarily small positive number. In our modified game, ajk can also be

arbitrarily small when player j is spreading his budget across conflicts 1
|Nj | , and the number of

conflicts of player j, | Nj |, is arbitrarily large. To avoid problems arising from the ambiguity of

the term arbitrarily, we bound ϵ < 1
|Nj | ∀j and note that, for player j, the incentive to choose

a∗ji = ϵ < 1
|Nj | still holds for any arbitrarily large number of conflicts.

By substituting aji = ϵ in expression (3), we obtain

ϵahi
(aih + ahi)2

>
1

4
. (4)

The expression in the left hand side of this inequality reaches the maximum when aih = ahi. Thus,

we evaluate expression (4) at the point aih = ahi:
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ϵahi
(aih + ahi)2

>
1

4
⇔ ϵahi

(2ahi)2
>

1

4
⇔ ϵ

ahi
> 1 ⇔ ϵ > ahi = aih.

Recall that the marginal payoffs for conflicts that receive a strictly positive allocation are equal

and battlefields are order such that vih > vik ∀k ∈ Ni. Thus, in equilibrium, aih ≥ aik > aij =

0;∀k ̸= j, which implies that the allocation aih is higher than the average (i.e., aih > 1
|Ni−1|).

Hence, ϵ > aih > 1
|Ni−1| >

1
|Ni| Thus, we have reached a contradiction.

A.2 Equilibrium Characterization Impossibility/Possibility

The first proof of this section substantiates Proposition 2 and proceeds in three steps. First, we

show that the equilibrium allocation shares of any four connected players along a path are related

through the first order conditions. Second, we show that, in this case, even when we take the

equilibrium allocation shares of the other players as given, the resulting expression is a general

polynomial of degree 6. Longer paths lead to general polynomials of higher degree. Finally, using

the Abel-Ruffini Theorem, which is valid for general polynomials, we finish the proof of proposition

2.

Step 1: This step follows from the first order conditions. When Proposition 1 holds, the Lagrange

function for each player i is given by

L =
∑
j∈Ni

vijaij
aij + aji

+ λi(1−
∑
j∈Ni

aij), ∀i ∈ N and ∀(ij) ∈ B

and the first order conditions for every player i ∈ N are

∂L
∂aij

=
vijaji

(aij + aji)2
− λi = 0, ∀j ∈ Ni (5)

∂L
∂λi

= (1−
∑
j∈Ni

aij) = 0 (budget constraint) (6)

By rearranging expression 5, we obtain

vijaji
(aij + aji)2

= λi, ∀i ∈ N and ∀(ij) ∈ B. (7)

Thus, our problem is a system of (n +
∑

i∈N di) non-linear equations with (
∑

i∈N di) unknowns.
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Furthermore, for any two players q and k in the set Ni, expression (7) implies that

viqaqi
(aiq + aqi)2

= λi and vikaki
(aik + aki)2

= λi.

As the left hand side in both expressions are equal to λi, we equate them and rearrange such that

aqi = aki
vik
viq

(aiq + aqi)
2

(aik + aki)2
. (8)

In the underlying undirected network, there is a path P = {qi, ik} of length 2 between players q

and k. Expression (8) shows that the optimal strategy of player q ∈ Ni (aqi) depends not only on

player i’s choice against him (aiq) but also on the choice of player i against k, which is connected

to i but not q, (aik), and the choice of player k against i (aki). This relation is quadratic.

More generally, the relation of the strategies of players that belongs to a path in the network can

be represented as follows. Consider an arbitrary path P = {i1i2, i2i3, . . . , ij−1ij} in the network

and the allocation associated to the first conflict of that path

ai1i2 = ai2i3
vi2i3
vi2i1

(ai1i2 + ai2i1)
2

(ai2i3 + ai3i2)
2
. (9)

This expression (9) follows the same structure as expression (8), which can be used recurrently and

substitute ai2i3 in expression (9) for the corresponding term:

ai1i2 =

(
ai3i4

vi3i4
vi3i2

(ai2i3 + ai3i2)
2

(ai3i4 + ai4i3)
2

)
vi2i3
vi2i1

(ai1i2 + ai2i1)
2

(
(
ai3i4

vi3i4
vi3i2

(ai2i3+ai3i2 )
2

(ai3i4+ai4i3 )
2

)
+ ai3i2)

2
. (10)

Expression (10) refers to conflict ai1i2 but we have not include yet the first order conditions of

player i1,
∂Li1

∂ai1i2
=

ai2i1
(ai1i2 + ai2i1)

2
− λi1 = 0.

By replacing ai1i2 with the expression defined in equation 10, we get

vi2i1ai2i1

(
(
ai3i4

vi3i4
vi3i2

(ai2i3+ai3i2 )
2

(ai3i4+ai4i3 )
2

)
vi2i3
vi2i1

(ai1i2+ai2i1 )
2

(

(
ai3i4

vi3i4
vi3i2

(ai2i3
+ai3i2

)2

(ai3i4
+ai4i3

)2

)
+ai3i2 )

2
+ ai2i1)

2
− λi1 = 0 (11)

For the purpose of our proof is enough that we stop the recurrent substitution in a path of length 3.

However, one could continue with the recurrent substitutions along the path, reaching expressions
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of higher order.

Step 2: Let’s assume the most favorable case, where all unknowns in expression (11) are known

except one, ai4i3 . To simplify notation, let ai4i3 = x and every other combination of parameters

will be assumed to be known and therefore substituted by a known constant. Thus, we can rewrite

expression 11 as
c1

( c2
(c3+x)2

c4
(

c5
(c3+x)2

+c6)2
+ c7)2

− c0 = 0

If we expand this expression and reorganize it

c1(c5 + c6(c3 + x)2)4

(c2c4(c3 + x)2 + c7(c5 + c6(c3 + x)2)4
− c0 = 0

c0(c2c4(c3 + x)2 + c7(c5 + c6(c3 + x)2)4 − c1(c5 + c6(c3 + x)2)4 = 0.

The final expression is the following general polynomial of degree 6, which is irreducible in C, and,

consequently in R.

c8x
8 + c9x

7 + c10x
6 + c11x

5 + c12x
4 + c13x

3 + c14x
2 + c15x+ c16 = 0.

This expression applies to any arbitrary path of length three in the network of the game (provided

that it exists). In general, we can continue with a recurrent substitution of terms along any path

in the network. Denote the length of a path between two players by L. Then, due to the quadratic

nature of expression (7), the resulting expression is also a general polynomial,

c2Lx
2L + c2L−1x

2L−1 + c2L−2x
2L−2 + . . .+ c2x

2 + c1x+ c0 = 0.

So, even when have solved all other unknowns, we still have to find the solution to a general

polynomyal of high degree. When the path is three, this general polynomial is of degree 8.

Step 3: For the last step, we refer to the Abel-Ruffini Theorem:

Theorem 1. Abel-Ruffini Theorem

A general algebraic equation of degree ≥ 5 cannot be solved in radicals alone.
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The proof is valid for general polynomials, which are irreducible. Rosen (1995) provides details of

the proof and a historical account of the contribution in relationship to Galois theory.

The next proof substantiates the claim that under some conditions of symmetry a solution can be

expressed using radicals. More concretely, as stated in the main text, we shall show that Claim 1

below is true.

Claim 1: In a weighted q-regular where
∑

j∈Ni
vij = V̄ for every i ∈ N . In this case, the equilibrium

strategies for every player i over each conflict (ij) ∈ B is a∗ij =
vij
V̄

.

Proposition 1 establishes that the solution is unique. So, we just check that the proposed equilibrium

satisfy the first order conditions. It is straightforward to see that the proposed equilibrium satisfies

the budget constraint.

Recall expression (7). Dividing both sides by λi, summing over element k ∈ Ni, and rearranging,

we obtain ∑
k∈Ni

√
vikaki∑

k∈Ni
(aik + aki)

=
√
λi, ∀i ∈ N and ∀(ij) ∈ B. (12)

Expression (7) can be rearranged in a similar manner

√
vijaji

(aij + aji)
=

√
λi, ∀i ∈ N and ∀(ij) ∈ B. (13)

By equating expressions (12) and (13) and rearranging, we obtained the best response function of

player i against player j,

aij =

√
vijaji∑

k∈Ni

√
vikaki

∑
k∈Ni

(aik + aki)− aji (14)

According to Claim 1, in equilibrium, a∗ij should be vij
V̄

when all other allocations are in equilibrium.

Thus, we can check this claim through the best-response above:

aij =

√
vij

vji
V̄∑

k∈Ni

√
vik

vki
V̄

∑
k∈Ni

(
vik
V̄

+
vki
V̄

)− vji
V̄
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Using the fact that vij = vji and
∑

k∈Ni
vik = V̄ , we simplify

aij =

√
vij

vij
V̄∑

k∈Ni

√
vik

vik
V̄

∑
k∈Ni

(
vik
V̄

+
vik
V̄

)− vij
V̄

⇔ aij =

vij√
V̄∑

k∈Ni

vik√
V̄

∑
k∈Ni

(2
vik
V̄

)− vij
V̄

⇔ aij =

vij√
V̄∑

k∈Ni
vik√

V̄

2

V̄

∑
k∈Ni

vik −
vij
V̄

⇔ aij =
2vij
V̄

− vij
V̄

=
vij
V̄
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B Instructions and Screenshot of the graphical representation

B.1 Instructions
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B.2 Screenshot of the graphical representation

Figure 4: Decision interface for participants with three conflicts

Figure 5: Decision interface for participants with two conflicts
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C Potential Confounds

As it is mention in section 5.1, we compare the distribution of the allocations given their location

in the interface when participants were taking their decisions. In Table 5, we present, for each

treatment, the vector with the average allocation share to the bottom left, top center and bottom

right in the case of the triangle interface and left and right in the case of the slider interface. It is

apparent that allocations shares do not depend on the location of the boxes.

Table 5: Average Relative Share across Locations and Test for Order Effects

Homogeneous Heterogeneous

Ring (0.512,0.487) (0.528,0.471)

Complete (0.331,0.333,0.336) (0.345,0.308,0.345)

Line i = {2} (0.509,0.490) (0.496,0.503)
i = {3} (0.522,0.477)

Diagonal i = {1, 3} (0.507,0.493) (0.501,0.498)
i = {2, 4} (0.339,0.325,0.334) (0.352,0.316,0.331)

We compare the relative shares according to their positions in the interface. We
present the results of the Friedman test using *** for p<0.01, ** for p<0.05 and *
for p<0.1 to show statistical differences.

For all our treatments, the results associated to the Friedman tests do not allow us to reject the

null hypothesis that the allocation shares across position are not systematically different.

To test if the representation of the network is not neutral and have behavioural effects, first we

present a series of Friedman test, where we compare the average allocation vector of participants

allocated to a given position across the four positions in Table 6.

Alternatively, we could compare the distribution of allocation shares for a given box by the assigned

position in the each network : position 1, position 2, position 3 or position4. The results of this

alternative way to think about representation effects are shown in Table 7.

In total, we conducted 18 Friedman tests: 6 for the Complete network, 2 for the Ring network, 8 for

the Diagonal network and 2 for the Line Network. Note that for participants with two battlefields

the p-values of comparing the allocations in box1 across position is the same than comparing the

allocations in box2 across positions. Using the alternative formulation, we reach the same conclusion

about the lack of effects of due to position effects as in the main text.
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Table 6: Average Relative Shares across Boxes and Position and Test for Position Effects

Homogeneous Heterogeneous

Ring

i = {1} (0.483,0.516) (0.642,0.357)

**i = {2} (0.513,0.486) (0.653,0.364)
i = {3} (0.524,0.475) (0.715,0.284)
i = {4} (0.512,0.488) (0.774,0.225)

Complete

i = {1} (0.333,0.341,0.326) (0.510,0.295,0.195)

**i = {2} (0.349,0.324,0.325) (0.495,0.295,0.209)
i = {3} (0.313,0.330,0.356) (0.519,0.288,0.191)
i = {4} (0.340,0.302,0.357) (0.510,0.3120.177)

Line i = {2} (0.617,0.382) –
i = {3} (0.541,0.468) –

Diagonal

i = {1} (0.497,0.502) (0.640,0.359)
i = {3} (0.477,0.522) (0.542,0.457)
i = {2} (0.337,0.306,0.356) (0.542,0.285,0.171)
i = {4} (0.333,0.297,0.369) (0.495,0.309,0.195)

Average realtive shares allocated to a given conflict by participants in the same posi-
tion. Results of the Friedman test at 1%, 5% and 10% significance level are denoted
by ***, ** and *, respectively.

Table 7: Test for Order Position associated Friedman Test P-values

Homogeneous Heterogeneous
a1 a2 a3 a1 a2 a3

Ring 0.8310 0.8310 0.3877 0.3877

Complete 0.9767 0.2508 0.9160 0.4297 0.8081 0.8312

Line i = {2}
0.1721 0.1721

—
i = {3} —

Diagonal i = {1, 3} 0.4790 0.4790 0.8458 0.8458
i = {2, 4} 0.2541 0.3432 0.3709 0.3106 0.6875 0.2689

This set of robustness results reinforce the idea that we can abstract position effects and focus on

the allocation shares of boxes.
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D Trend analysis

We estimate a Dirichlet Covariate Model to test for time trends. As it is mention in section 2, this

analysis relies in the simultaneous estimation of the concentration parameters of a Dirichlet process

that minimize the distance between the observed and the predicted data given a set of covariates.

For this purpose, we consider the following specification,

ln(αtk) = β0k + β1kHTt + β2kRoundst + β3k(Roundst ×HTt) + γγγXXXt + ϵt

where XXX represents a vector of control variables, in this case dummy variables for session and

positions. Notice, that the number of simultaneous equations that we need to estimate correspond

to the number of battlefields that a participants is facing. Table ?? shows the estimates of the

Complete and Diagonal network for participants with degree 3.

Table 8: Dirichlet Covariate Model for Time trends (Degree 3 participants)

Complete Network Diagonal Network
ln(α1) ln(α2) ln(α3) ln(α1) ln(α2) ln(α3)

Heterogeneous values 1.24** 1.18** 0.47 0.07 -0.12 -0.89
(0.51) (0.46) (0.49) (0.48) (0.58) (0.54)

Round -0.01 -0.01 -0.01 0.01 0.03 0.02
(0.01) (0.01) (0.02) (0.03) (0.02) (0.02)

Round × Heterogeneous -0.03 -0.01 -0.03 -0.01 -0.00 -0.00
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Constant 0.74* 0.48 0.85* -0.18 -0.56** -0.13
(0.40) (0.37) (0.47) (0.44) (0.27) (0.37)

Observations 1,280 1,280 1,280 1,280 1,280 1,280
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

As we are interested in the expected values of the estimated distribution conditional on our co-

variates, we will observed a time trend effect if the estimates for each dimension are different from

each other. Formally, we will observe a time trend effect if

(β21 ̸= β22 ̸= β23) ∨ (β31 ̸= β32 ̸= β33)

When we conduct the joint hypotheses test for each network using the non-linear Wald test of the

condition above we cannot reject the null hypotheses. This suggests that statistically we do not

observe time trend effects.
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Table 9: Dirichlet Covariate Model for Time Trends (Degree 2 Participants)

Diagonal Network Ring Network Line Network
ln(α1) ln(α2) ln(α1) ln(α2) ln(α1) ln(α2)

Heterogeneous values 0.28 0.74** -0.15 0.10 0.03 -0.41
(0.43) (0.35) (0.45) (0.52) (0.31) (0.30)

Round 0.02 0.03 0.02 0.00 0.03** 0.04***
(0.02) (0.02) (0.02) (0.02) (0.01) (0.01)

Round × Heterogeneous -0.03 -0.04* -0.03 -0.00 -0.01 -0.02
(0.02) (0.02) (0.02) (0.03) (0.01) (0.01)

Constant 1.83*** 1.63*** 0.75** 0.92*** 0.29** 0.33
(0.44) (0.48) (0.30) (0.28) (0.14) (0.23)

Observations 1,280 1,280 1,280 1,280 2,160 2,160
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

We conduct the same exercise for the Degree 2 participants in the Diagonal, Ring and Line networks.

Table 9 shows the estimates of the model. For participants with degree 2, we will observe a time

trend effect if

(β21 ̸= β22) ∨ (β31 ̸= β32)

We cannot reject the null hypotheses in one out of six tests. That suggests that for participants

with degree 2 we do not observe time trend effects.

As robustness analysis, and to discard that our results are driven but the specific error process that

we are assuming, we conduct the non-parametric Wilcoxson signed rank sum test to compare the

choices made in the first 10 rounds with the choices of the second 10 rounds of the same treatment.

If the choices changes systematically with the repetition of the game, we should observe differences

at the beginning and the end of each treatment. Table 10 shows the results of this exercise.

The Wilcoxson signed rank sum test presented previously compares the distributions of decisions in

the first and second 10 rounds of a given treatment. We could also compare only the means using

a binomial test. Table 11 shows the threshold probabilities associated to each hypothesis test.

Note that all the threshold probabilities presented in the Table 11 are lower than 0.3833 and 0.4014

the test reference values. Thus, the null hypotheses, that the average choice in the first 10 rounds

of a treatment is equal to the average choice in the second 10 rounds of the same treatment, cannot

be rejected. Using both non-parametric methods, we do not find systematic difference between

the beginning or end of a treatment decisions. For our design the results of the parametric and
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Table 10: Non Parametric Analysis of Time Trends per Network and Component and associated
P-Values

Homogeneous Heterogeneous
a1 a2 a3 a1 a2 a3

Ring 0.3771 0.3771 0.3771 0.3771

Complete 0.8601 0.0501 0.3771 0.3771 0.1102 0.5966

Line i = {2} 0.2478 0.2478 1.0000 1.0000
i = {3} 0.4421 0.4421 0.7011 0.7011

Diagonal i = {1, 3} 0.0201 0.0201 1.0000 1.0000
i = {2, 4} 0.5966 0.2153 1.0000 0.8601 0.1102 1.0000

To control the potential effects over inference due to multiple hypothesis tests, we applied the
Bonnferonni correction where we test each individual hypothesis at confidence interval of 1−α =
0.05
20

.

Table 11: Threshold probability of Binomial Tests for Time Trends per Network and Component.

Homogeneous Heterogeneous
a1 a2 a3 a1 a2 a3

Ring 0.0196 0.0196 0.0201 0.0201

Complete 0.0184 0.0230 0.0215 0.0225 0.0227 0.0191

Line i = {2} 0.0203 0.0203 0.0137 0.0137
i = {3} 0.0331 0.0331 0.0151 0.0151

Diagonal i = {1, 3} 0.0192 0.0192 0.0217 0.0217
i = {2, 4} 0.0199 0.0232 0.0226 0.0201 0.0205 0.0227

non-parametric test implies that we do not observe learning effects in our environment.

To test this formally, we estimate a Dirichlet Covariate model controlling for rounds, a stage dummy

and the interaction effect considering position and session fix effects (see details in Appendix D).

The results of the test show that there are no learning effects (in which the allocation share from

one box is adjusted to increase or decrease the share of a different box as rounds progress). We also

find that dispersion of allocation shares increases in the second stage of two networks (complete

and diagonal) but decreases in the first stage of another network (line). In addition, we also run a

robustness check at the individual level, we estimate the same model but now for each participants

separately and we test if a given participants exhibit learning effects. The results show that 63%

of our sample do not display behavioral changes across rounds.

Another concern in our experiment is the possibility of learning with the feedback received between

rounds. Figure 6 presents the average allocation share to each conflict by round for each network

and type of participant. A dashed vertical red line separates the end of the first stage and the

47



beginning of the second stage. With a casual look, we observe small time trends within each stage,

if any.

Figure 6: Average Relative Shares over Rounds
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E Equilibrium Test

E.1 Estimated parameters of Dirichlet Covariate Model per networks

To test our main set of hypotheses, in a first instance we need to estimate the Dirichlet Covariate

Model for each network and type of participants – degree 3 or degree 2. We would like to estimate

simultaneously the concentration parameters of a Dirichlet process that minimize the distance

between the observed and predicted data given a set of covariates. As we do not observe learning

effects, see appendix D, to capture the idiosyncratic characteristics of each participant, our unit

of analysis is going to be the participant’s average allocation share per treatment per conflict. We

consider the following econometric specification,

ln(αk) = β0k + β1kHTi + γγγXXXi

where HTt is a dichotomous variable equal to one when the battlefield values are heterogeneous

and zero otherwise. As controls we include fix effects of sessions and we cluster the standard

errors by group of participants interacting with each other. Tables 12, 13, 14, 15 and 16 show the

estimates for the participants in the complete network, ring network, diagonal network with degree

2, diagonal network with degree 3 and line network, respectively.

Table 12: Dirichlet Covariate Model for the Complete Network

ln(α1) ln(α2) ln(α3)

Heterogeneous values -1.04*** -1.60*** -2.24***
(0.39) (0.38) (0.41)

Constant 3.09*** 3.17*** 3.22***
(0.37) (0.32) (0.3)

Observations 64 64 64
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

For the Complete network, we conduct the following hypotheses test based on our estimates:

exp(β̂01) = exp(β̂02) = exp(β̂03) and 2
3 exp(β̂01 + β̂11) = exp(β̂02 + β̂12) = 2 exp(β̂03 + β̂13) for

the Homogeneous and Heterogenous treatments, respectively.
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Table 13: Dirichlet Covariate Model for the Ring Network

ln(α1) ln(α2)

Heterogeneous values -2.49*** -3.24***
(0.80) (0.86)

Constant 5.27*** 5.27***
(0.66) (0.66)

Observations 64 64
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

For the Ring network, we conduct the following hypotheses test based on our estimates: exp(β̂01) =

exp(β̂02) and 1
3 exp(β̂01 + β̂11) = exp(β̂02 + β̂12) for the Homogeneous and Heterogenous treatments,

respectively.

Table 14: Dirichlet Covariate Model for participants with degree two in the Diagonal network.

ln(α1) ln(α2)

Heterogeneous values -1.61*** -2.07***
(0.69) (0.97)

Constant 4.33*** 4.29***
(0.80) (0.76)

Observations 64 64
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

For participants in the diagonal network with Degree two, we conduct the following hypotheses

test based on our estimates: exp(β̂01) = exp(β̂02) and 2
3 exp(β̂01 + β̂11) = exp(β̂02 + β̂12) for the

Homogeneous and Heterogenous treatments, respectively.
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Table 15: Dirichlet Covariate Model for participants with degree three in the Diagonal network

ln(α1) ln(α2) ln(α3)

Heterogeneous values -2.29** -2.65*** -3.03***
(0.52) (0.53) (0.50)

Constant 3.22*** 3.58*** 3.64***
(0.32) (0.36) (0.34)

Observations 64 64 64
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

For participants in the diagonal network with Degree 3, we conduct the following hypotheses test

based on our estimates: exp(β̂01) = exp(β̂02) = 0.328
0.343 exp(β̂03) and

0.332
0.499 exp(β̂01 + β̂11) = exp(β̂02 +

β̂12) =
0.332
0.167 exp(β̂03 + β̂13) for the Homogeneous and Heterogenous treatments, respectively.

For the line network, we need to consider that participants assigned positions 2 and 3 are facing a

different set of battlefield values in the heterogeneous values treatment. Therefore, we need to take

into account the differential effects of being assigned to position 2 or 3 and the heterogeneous effect

of the treatment given the assigned position. In particular, we consider the following specification,

ln(αk) = β0k + β1kHTi + β2kPosition2i + β3kHTi × Position2i + γγγXXXi

where the variable Position2i is equal to one if the participant i was assigned to the position 2 and

zero otherwise. In the Homogeneous treatment, we conduct the following hypothesis test based

on our estimates 0.465
0.535 exp(β̂01) = exp(β̂02). In the Heterogeneous treatment, the values of the

conflicts induces different predictions for participants in positions 2 and position 3. In these case,

we perform two hypotheses tests: exp(β̂01 + β̂11 + β̂21 + β̂31) =
0.328
0.672 exp(β̂02 + β̂12 + β̂22 + β̂32) and

exp(β̂01 + β̂11) =
0.457
0.543 exp(β̂02 + β̂12)
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Table 16: Dirichlet Covariate Model for the Line network.

ln(α1) ln(α2)

Heterogeneous values -1.64*** -1.65***
(0.01) (0.02)

Position 2 -1.71*** -1.76***
(0.01) (0.01)

Heterogeneous values × Position 2 0.856*** 1.25**
(0.01) (0.01)

Constant 5.00*** 4.85***
(0.35) (0.31)

Observations 108 108
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notice that all our hypothesis are made in term of the concentration parameters of the estimated

distributions while our estimations are done in terms of the natural logarithms of these parame-

ters. Even thought there is mathematically equivalence between β0box1 = β1box1 and exp(β0box1) =

exp(β1box1), from an statistical perspective the standard errors of β0box1 and exp(β0box1) are not the

same. To control by this lag invariance of the representation, we use the Wald test for nonlinear

hypotheses in which the standard errors and p-values are adjusted using the Delta method.
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E.2 Robustness analysis

Table 17: Expected Values of the OLS Estimates

Homogeneous Heterogeneous

Ring (0.504,0.495) (0.316,0.683)***

Complete (0.332,0.262,0.404)*** (0.305,0.437,0.256)***

Line
p=2 (0.473,0.526) (0.635,0.364)
p=3 (0.393,0.606)

Diagonal
d=2 (0.534,0.465)*** (0.430,0.569)***
d=3 (0.296,0.294,0.408)*** (0.292,0.478,0.229)***

For participants with degree 3, the first element of the vector each correspond to a∗1,
the second element to a∗2 and the third element of a∗3. Similarly, for participants with
degree 2 the first element of each vector correspond to a∗1 and the second element to
a∗2. We present the results of the non-linear Wald test using *** for p<0.01, ** for
p<0.05 and * for p<0.1.

Table 18: Percentage of Participants for which we reject the Nash equilibrium Behaviour using
OLS estimates

Homogeneous Heterogeneous

Ring 0% 100%

Complete 0% 100%

Line
p=2

100%
0%

p=3 100%

Diagonal
d=2 0% 0%
d=3 100% 100%
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F Sources of Information and Deviations from Equilibrium

F.1 Main Analysis

To investigate the deviations from equilibrium, we compute the euclidean distance from the observed

choices and the equilibrium choices. We want to see if been in a more complex environments induces

higher deviations. To do so, we conduct a regression analysis controlling by participants random

effects, fix effects of session and clustering the standard errors by group of participants interacting

with each other. Table 19 shows the estimates.

Table 19: Determinants of the Deviations from Equilibrium

Euclidian distance Euclidian distance
to Equilibrium actions to Equilibrium payoffs

HT 0.023 29.260**
(0.018) (14.153)

D=3 0.081*** 35.800***
(0.021) (8.095)

Diverse 0.077*** -9.701
(0.020) (8.793)

HT×D=3 -0.002 -10.320
(0.020) (12.800)

HT×Diverse -0.008 -9.454
(0.014) (10.686)

D=3×Diverse -0.076*** -2.166
(0.026) (12.450)

HT×D=3×Diverse 0.029 7.555
(0.028) (19.445)

Constant 0.140*** 88.271***
(0.019) (9.664)

Observations 7,280 7,280
Number of participants 182 182
Number of rounds per participant 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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F.2 Robustness Analysis

In order to check if our specifications are driving the results, we consider some robustness exercises.

We present results over the determinants of the deviations from equilibrium using a simple OLS

specification.

Table 20: Determinants of the Deviations from Equilibrium OLS

Euclidian distance Euclidian distance
to Equilibrium actions to Equilibrium payoffs

HT 0.023 29.286**
(0.018) (14.151)

D=3 0.081*** 35.796***
(0.021) (8.095)

Diverse 0.077*** -9.691
(0.020) (8.794)

HT×D=3 -0.002 -10.320
(0.020) (12.800)

HT×Diverse -0.008 -9.517
(0.014) (10.689)

D=3×Diverse -0.076*** -2.168
(0.026) (12.450)

HT×D=3×Diverse 0.029 7.618
(0.028) (19.446)

Constant 0.140*** 88.274***
(0.019) (9.664)

Observations 7,280 7,280
R-squared 0.127 0.100

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notice that if we compare these results with the regression analysis considering random effects,

some of the estimates change slightly but they remain in the same order of magnitude. These

estimates also keep the same level of significance than the ones estimated with random effect of

participants.
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G Other Decision Rules

We can replicate our analysis by considering different benchmark behaviour that operates with

less amount of information. For example, participants taking into account just their degree will

select strategies in proportion to their degree (1/d decision rule). If, in addition, participants

incorporate the weights of the links into their decision process, then, they will choose their strategies

in proportion to these weights (proportional decision rule). Formally, The proportional rule suggests

that the strategy of player i in link j is determined by the relative weight of link j, w(lij), with

respect to every other link of player i meaning that a∗ij =
w(lij)∑
j w(lij)

.

G.1 Analysis with the 1
d

Rule as Benchmark

Table 21: Determinants of the Deviations from 1
d rule

Euclidian distance Euclidian distance
to 1

d actions to 1
d payoffs

HT 0.063*** 34.122**
(0.019) (13.450)

D=3 0.080*** 37.277***
(0.021) (8.300)

Diverse 0.081*** -7.904
(0.019) (8.773)

HT×D=3 0.014 -19.200
(0.031) (13.174)

HT×Diverse -0.045*** -22.722**
(0.015) (11.017)

D=3×Diverse -0.077*** -6.091
(0.027) (12.356)

HT×D=3×Diverse 0.073** 24.140
(0.037) (19.649)

Constant 0.105*** 82.954***
(0.016) (8.694)

Observations 7,280 7,280
Number of participants 182 182
Number of rounds per participant 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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G.2 Analysis with the Proportional Rule as Benchmark

Table 22: Determinants of the Deviations from Proportional rule

Euclidian distance Euclidian distance
to Proportional actions to Proportional payoffs

HT 0.020 29.487**
(0.018) (14.164)

D=3 0.081*** 35.713***
(0.021) (8.118)

Diverse 0.099*** -5.904
(0.019) (8.806)

HT×D=3 -0.002 -10.299
(0.020) (12.777)

HT×Diverse -0.028* -11.542
(0.015) (10.660)

D=3×Diverse -0.097*** -4.964
(0.025) (12.390)

HT×D=3×Diverse 0.049* 9.007
(0.029) (19.388)

Constant 0.142*** 88.135***
(0.019) (9.885)

Observations 7,280 7,280
Number of participants 182 182
Number of rounds per participant 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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