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Económicas, Región Centro (CIDE-RC), México
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Abstract

The travel cost (TC) method models the number of trips to a recre-
ation site as a function of the costs to reach that site. The single site TC
equation is particularly vulnerable to endogeneity since travel costs are
chosen by the visitor. This paper suggests a control function approach
that breaks the correlation between travel costs and the error term by
plugging inferred omitted variables into the TC equation. Inference of
omitted variables is carried out on an endogenous free, stated preference
equation that, arguably, shares omitted variables with the TC equation.
By revisiting the TC and contingent valuation (CV) data analyzed by Fix
and Loomis (1998), this paper infers the omitted variables from the CV
equation via a finite mixture specification —an inference strategy whose
justification resembles the use of heteroscedastic errors to construct instru-
ments as suggested by Lewbel (2012). Results show that not controlling
for endogeneity in this particular case produces an overestimation of wel-
fare measures. Importantly, this infer and plug-in strategy is pursuable
in a number of contexts beyond recreation demand applications.

1 Introduction

More than sixty years ago, Hotelling (1947) made the observation that the cost
of travelling to a recreation site can serve as a reasonable proxy for the price
of a trip to that site. Consequently, his reasoning follows, a demand curve for
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the recreational services provided by the site can be inferred by modelling the
number of (seasonal or annual) trips to the site as a function of the costs to
reach it.

The travel cost (TC) method’s strength and weakness both lay at the core
of Hotelling’s observation. On one hand, the possibility of using travel costs as
proxy of entry fees for non-market public goods explains why the TC method
has become a staple in the economists’ toolkit to estimate willingness to pay
(WTP) values.

On the other hand, travel costs are not determined in a competitive market
but instead chosen by the visitor, and consequently are endogenous to number of
trips.1 Handling TC endogeneity has proved troublesome because collecting an
instrument for travel cost is particularly difficult due to its inherent individual-
specific nature (Moeltner and Von Haefen, 2011). In addition, modern recreation
demand models are nonlinear constructs —e.g. count data densities, or site
choice logit probabilities. Consequently, the conventional instrumental variable
(IV) approach, developed for the linear regression case, no longer apply —a
situation labeled the nonlinear instrumental variable problem by Berry (1994).

IV approaches have recently been proposed to handle endogeneity in a multi-
site context (see Moeltner and Von Haefen, 2011, for a review). These ap-
proaches rely on a rich variation in site attributes to exploit the trade-offs be-
tween travel time and site attributes. However, these methods are not feasible
in the single site context because valuing a single site is equivalent to valuing a
bundle of attributes at once, and therefore no rich variation in site attributes is
available.

To the best of our knowledge, Fix et al. (2000) is the only previous study
that has developed an econometric strategy to tackle endogeneity in a single
site context. They estimate a three-equation system of seemingly unrelated re-
gressions (SUR) to empirically test the theoretical distinction made by Ward
(1984) between endogenous and exogenous travel costs. Accordingly, one equa-
tion models number of trips as a function of total travel costs which include both
exogenous and endogenous components; a second equation models endogenously
determined out of pocket costs as a function of total exogenously determined
out of pocket costs; and the third function models endogenously determined
on-site time as a function of total exogenously determined out of pocket costs.
This SUR strategy unavoidably runs into nuisances when justifying the specific
items to be included or not in the endogenous component of the travel costs.
These nuisances may partially explain why this SUR strategy has not taken off.

This paper proposes a strategy that controls for endogeneity in single site
TC equations by exploiting the information embedded in answers to stated
preference (SP) questions. We take availability of SP data for granted since
there is a substantial non-market valuation literature that gathers TC and SP
data via a single survey with the aim of either testing convergent validity or
drawing on their relative strengths to improve WTP estimates (see Jeon and

1Early studies discussing TC endogeneity include Allen et al. (1981); Caulkins et al. (1985);
McConnell (1975); McConnell and Duff (1976).
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Herriges, 2017; Wang and Zhao, 2019; Whitehead et al., 2008).
This paper departs from the intuition that, if respondents are presented to

TC and SP questions via a single survey, unobserved variables in the single site
TC equation must be similar, if not identical, to the unobserved factors in the SP
equation. This intuition is more likely to hold when the SP scenario is designed
to obtain use values associated to the recreation site that the respondent is
visiting at the time the survey is implemented. An example of such a SP scenario
is the dichotomous contingent valuation (CV) question implemented by Fix and
Loomis (1998) as part of an on-site TC survey: If your share of the costs to visit
[this recreation site] were X dollars higher, would you still have come on this
trip?.

A key component of SP protocols is the experimental variation in the price
attribute. This feature implies that, in contrast to the TC equation, the price
attribute in the SP equation is not correlated with the omitted variables. Conse-
quently, omitted variables in the SP equation produce unobserved heterogeneity
in preferences but does not imply the presence of endogeneity.

If only we could infer/estimate the omitted variables from the endogenous
free equation and plug them into the endogenous one. This infer and plug-in
strategy would break the correlation between travel costs and the error terms
by eliminating the source of such a correlation —i.e. by cleaning the error term
out of the variables that generate correlation with the travel costs. Sticking to
the definition that a control function (CF) “is a variable that, when added to
a regression, renders a policy variable appropriately exogenous” (Wooldridge,
2015, p. 420), the inferred omitted variables that are added to the TC equation
can be characterized as CF variables.

Notice that the presence of omitted variables in the endogenous free equation
implies that the error term is heteroscedatic. An error-components represen-
tation of such a heteroscedasticity motivates the use of finite mixture models
(FMM) (Train, 2009). The error structure of FMM opens the door to the in-
ference of omitted variables because these models test for the existence of a
categorical omitted variable impacting the outcome variable either directly (via
changes in intercept) or indirectly (via changes in slopes) or both (Martinez-
Cruz, 2019). This motivation to infer omitted variables via FMM specifications
very much resembles Lewbel (2012)’s justification for the use of heteroscedatic
errors as an IV strategy.

To test this infer and plug-in strategy, we revisit the TC and CV data ana-
lyzed by Fix and Loomis (1998). To avoid the propagation of standard errors
implicit in a two-stage procedure, the estimation is carried out in a single step
via a Bayesian Inference Approach. Estimates suggest that not controlling for
endogeneity implies an overestimation of welfare measures —a result that should
be treated as context-specific.

The rest of this document is organized as follows. Section 2 describes the
jointly distributed decisions modelled in this paper and the Bayesian Inference
Approach used to implement the infer and plug-in strategy. Section 3 illustrates
the application of the proposed strategy by revisiting the data obtained by Fix
and Loomis (1998). Section 4 concludes and discusses the potential of this
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strategy in a number of contexts beyond recreation demand applications —e.g.
residential electricity demand, hedonic price applications, etc.

2 Infer and plug-in strategy

This sections, first, describes a single site travel cost (TC) equation as sharing
omitted variables with a contingent valuation (CV) equation, and the impli-
cations in terms of probabilistic modelling. Then, this section presents the
Bayesian Inference Approach implemented to estimate both equations simulta-
neously which helps in avoiding the propagation of standard errors implicit in
a two-stage procedure.

2.1 Jointly distributed decisions

Today’s single site applications of the TC method rely on Poisson or Negative
Binomial econometric specifications. Here we focus on the Poisson specification
because, as it will become clear later on, our econometric approach allows for a
discretely distributed intercept which is an alternative to the Gamma distribu-
tion assumed by the Negative Binomial.

Theoretically rooted by Hellerstein and Mendelsohn (1993), a Poisson spec-
ification deals with the non-negative, integer nature of the number of trips (yi)
chosen by individual i at the beginning of a season/year. The probability density
function of a Poisson distribution is defined as

P (Y = yi) =
e−λλyi

yi!
(1)

The λ parameter represents the mean and the variance of Y , and is assumed
to behave in an exponential manner. That is, λ = E(Y ) = exp(α0 + αcC +
γ′X1) —where α0 is an intercept; αc is the parameter capturing the response
to changes in travel costs; and γ is a k × 1 vector of coefficients associated to
the k × 1 vector of control variables X1.

Hanemann (1984) provides the theoretical link between the dichotomous CV
question and the utility maximization framework. Accordingly, the probability
that an individual answers yes to a dichotomous CV question is equivalent to
the probability that the individual’s indirect utility under the CV scenario (U cvi )
is larger than under current conditions (U cci ), i.e. P (∆U∗i = U cvi − U cci > 0).
Since ∆U∗i is well known by the decision maker but only observable up to
certain degree from the researcher’s point of view, it is necessary to incorporate
an error term, i.e. ∆U∗i = ∆Ui + εi. Assume that ∆Ui can be expressed in a
linear manner, ∆Ui = β0 + βbB + ν′X2 —where β0 is an intercept; βb is the
parameter capturing the response to changes in the bid presented in the CV
scenario; and ν is a k × 1 vector of coefficients associated to the k × 1 vector
of control variables X2. The vectors of control variables in both equations, X1

and X2, may include identical variables.
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We can express the probability of individual i answering yes to a dichotomous
CV question as

P (Di = 1) = P (∆U∗i > 0) = P (εi > −(β0 + βbB + ν′X2)) (2)

Since εi is assumed normally distributed with mean zero and variance σ2,
dividing the components of expression (2) by σ is equivalent to obtain the stan-
dard normal distribution with cumulative density function Φ which generates
the probit specification:

P (εi > −(β0 + βbB + ν′X2)) = Φ((β0 + βbB + ν′X2)/σ) (3)

Up to this point, nothing deters us from treating both probabilities as inde-
pendent of each other —i.e. P (Y = yi, Di = 1) = P (Y = yi)P (Di = 1).

Now assume that O is also a relevant control variable when modelling both
the mean parameter of the Poisson distribution and the change in utility in the
probit model. This variable, however, is not observed by the researcher. This
implies that the Poisson distribution of trips as well as the normal distribution
of the willingness to pay implicit in the probit model are both correlated with
O, and therefore are jointly distributed —i.e. P (Y = yi, Di = 1) 6= P (Y =
yi)P (Di = 1).

Assume O is a variable with G categories (or a continuous one that can be
categorized in G categories). Then P (Di = 1) can be modelled via a finite
mixture specification, i.e.

P (Di = 1) =

G∑
g=1

πgΦg((β0,g + βb,gB + νg
′X2)/σg) =

G∑
g=1

πgΦg(µg/σg) (4)

where πg is the relative size of the category g, and each category is described by
a mean characterized by parameters β0,g, βb,g, and νg. This modelling strategy
is equivalent to model unobserved heterogeneity in preferences.

For the case of expected trips, E(Y ), O is an omitted variable that provokes
endogeneity and, consequently, when controlled for, parameter estimates are
unbiased. Thus an expression that controls for O looks as follows

E(Y ) = exp(α0 + αcC + γ′X1 + αoO) (5)

Equation (5) assumes O is observed. But if O is not observed, then

E(Y ) =

G∑
g=1

πgexp(α0,g + αcC + γ′X1) =

G∑
g=1

πgλg (6)

Consequently, the joint probabilities can be expressed as follows

P (Y = yi, Di = 1) =

G∑
g=1

πg
e−λgλyig
yi!

Φg(µg/σg) (7)
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2.2 Bayesian Inference Approach

The EM (Expectation-Maximization) algorithm is a common approach to esti-
mate equation (7). An EM’s step involves updating the posterior probabilities.
However, a posterior probability cannot analytically be derived in our case. A
Bayesian Inference Approach is useful in this context because Markov chain
Monte Carlo (MCMC) methods are implemented to simulate the posterior dis-
tribution.

A Gibbs sampling procedure was implemented to simulate the posterior dis-
tribution.2 As an iterative algorithm, Gibbs sampling requires a set of starting
values for all model parameter to begin the process. It is common to discard
the first posterior draws because they might not be representative of the target
distribution. This period is called burn-in. The subsequent posterior draws are
used for inference by creating summary statistics. For this study, three chains
were run in parallel and convergence was assessed by using the potential scale
reduction factor (PSRF) (Gelman et al., 1992). A mean PSRF of less than 1.2 is
a common threshold to grant convergence (Brooks and Gelman, 1998; Sinharay,
2004).

Non-informative prior distributions were considered for all model parame-
ters. The prior distribution for all model parameters concerning the on-site
Poisson model was normal with mean zero and variance 1,000. The prior distri-
bution of model parameters concerning the probit model was normal with mean
zero and variance 10 because the independent variable (bid) was standardized.

In order to model the mixtures, the marginal probabilities of each mixing
proportions were modeled as a Dirichlet(1,. . . ,1) process, which is a typical
choice as a noninformative prior. In addition, a categorical prior for the number
of classes was also used.

A total of 30,000 total iterations were used for Gibbs sampling, 10,000 of
them were for the burn-in period. The model converged successfully according
to the mean PSRF. When using Gibbs sampling for a finite mixture model,
there is a risk of label switching. To address this issue, we applied the Equiv-
alence Classes Representativeness (ECR) algorithm as implemented in the la-
bel.switching R package (Papastamoulis, 2015).

3 Results

This section revisits the data gathered by Fix and Loomis (1998). Their travel
cost data refers to mountain bikers visiting Moab, Utah, in mid-March 1996.
Fix and Loomis (1998)’s goal was to test whether the TC method and the CV
method yield similar WTP estimates. Thus mountain bikers were faced to the
dichotomous contingent valuation question if your share of the costs to visit
Moab area, on this trip, were X dollars higher, would you still have come to the
Moab area on this trip?.

2Coding was carried out in JAGS, taking advantage of the rjags package in R.
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Table 1 presents the variables used in the estimations reported by Fix and
Loomis (1998). In this paper, we take these variables as they were calculated
by Fix and Loomis (1998) and implement the infer and plug-in strategy.

We first carry out a two step-procedure. Table 2 reports the estimates of
the first stage. Resembling the specifications by Fix and Loomis (1998), Bid is
the only regressor included. Results of the finite mixture specification on the
answers to the CV question are reported in the first two columns. For compar-
ison purposes, the probit specification is reported in the third column. While
the coefficients for class 2 are not significant, this is not a feature that deters us
from carrying out the second stage. That is, we use the posterior probabilities
from the finite mixture specification to infer the dichotomous omitted variable
implicit in the presence of classes.

Table 3 reports a conventional on-site Poisson specification in the first col-
umn. In the second column, we can see the results from the second stage of
the infer and plug-in strategy. Notice that there is an alternative strategy to
directly plugging an omitted variable. Instead, we can use the posterior proba-
bilities themselves as control variables. The third column in table 3 reports the
results of such a strategy.

Four features in table 3 are worth highlighting. First, the point estimates of
the travel cost parameter are larger in absolute value when the infer and plug-
in strategy is implemented (columns II and III) in comparison to the estimate
from the conventional specification (column I) —i.e. -2.64 and -2.49 versus -
2.03. This would imply that the half price elasticity is underestimated when
endogeneity is not controlled for.

A second feature in table 3 is the high statistical significance of the inferred
omitted variable —i.e. the omitted variable is variable relevant when informing
the travel cost equation. The third feature refers to the magnitude and sign of
the coefficient associated to the inferred omitted variable under both strategies
—0.62 and 0.69.

Finally, the fourth feature in table 3 is the indication that the inclusion
of the omitted variable improves the statistical fit of the specifications. This
conclusion can be reached through the AIC, BIC and pseudo-R2 criteria. In
particular, the best statistical fit is provided by the specification that includes
the dichotomous inferred omitted variable.

Indeed, a two-stage procedure implies a propagation of standard errors that
makes statistical inference difficult. Thus we implement the Bayesian Inference
Approach described in section 2.2. The mean of the posterior draws and the
95% credible interval are reported in table 4.

Four features are worth noticing in table 4. First, in line with estimates
from the two-stage approach, the specification that controls for endogeneity
(column II) yields larger estimates (in absolute value) of the travel cost param-
eter — -2.82 versus -2.06. Second, the variables biking skills and income, that
are not significant in the two-stage procedure, become significant due to their
smaller standard errors. Third, the inferred omitted variable (class 2) is highly
significant —as in the two-stage procedure. Finally, the statistical fit of the
simultaneous specification is preferred over the concentional on-site Poisson,
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based on on the deviance information criterion (DIC) which is a hierarchical
modeling generalization of the Akaike information criterion (AIC).

4 Conclusions and discussion

This paper illustrates how the endogeneity inherent to single travel cost equa-
tions can be handled by plugging omitted variables that are inferred from an
endogenous free, stated preferences equation. The key assumption to implement
this infer and plug-in strategy is that both equations share omitted variables
—or, alternatively, that they can be described as two seemingly unrelated re-
gressions.

This infer and plug-in strategy can be implemented in a number of research
fields where combination of stated and revealed preferences is common practice.
For instance, transportation (Helveston et al., 2018), health (Lambooij et al.,
2015; Mark and Swait, 2004), and hedonic applications (Phaneuf et al., 2013).
Also, we believe that the potential of this strategy goes beyond those fields. For
instance, a recurrent topic in energy economics is the estimation of the demand
for residential electricity. Following Shin (1985), researchers usually model elec-
tricity consumption as a function of the average price instead of the marginal fee
(e.g. Alberini and Filippini, 2011; Blázquez et al., 2013). Indeed, this modelling
decision is under suspicion of endogeneity. Assume that a sample of household
heads is presented to a discrete choice experiment (or other stated preference
question) in which they must choose among refrigerators with varying levels
of energy efficiency. The stated decisions, arguably, share omitted variables
with the electricity consumption and, therefore, the infer and plug-in strategy
described here would represent an alternative to control for endogeneity.
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Table 1: Descriptive statistics (N=187)

Variable Mean Std. Dev. Min Max

Bid Randomly assigned bid (dol-
lars)

178.21 148.83 5 500

Age Age of respondent 27 8 15 56
Trips Number of trips per year 2.90 6.45 1 80

Travel Cost Travel costs of round tripa

(thousand dollars)
0.277 0.726 0.003 8.985

Biking skill Auto reported biking skillb 2.75 0.82 1 4
Income Annual income ( thousand

dollars)
24.09 26.26 5 150

Price of substitutes Prices to mountain bike sites
with similar weather c

0.474 0.396 0 1.322

aIncluding out-of-pocket expenditures and one third opportunity cost of time.
bWith 1 indicating novice and 4 indicating expert.
cMeasured in thousand miles from respondent’s home to the substitute site.

Table 2: Probit and finite mixture estimates on answer of contingent valuation
questiona

(I) (II)
class 1 class 2 probit

Bid -0.0329∗ -0.0128 -0.0102∗∗∗

(0.007) (0.007) (0.001)
Intercept 3.380∗∗∗ 5.040 2.310∗∗∗

(0.688) (3.444) (0.337)
share 0.65 0.35
AIC 184.91 187.17
BIC 201.06 193.63
N 187 187

a“If your share of the costs to visit the Moab area,

on this trip, where x dollars higher would you still

have come to the Moab area on this trip?”

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3: On-site Poisson specification on number of trips per year

I II III

Travel Cost -2.028∗∗∗ -2.642∗∗∗ -2.399∗∗∗

(0.384) (0.423) (0.406)

Biking skills 0.0141 0.00836 -0.00439
(0.066) (0.065) (0.067)

Income 0.000116 0.00102 0.000323
(0.003) (0.003) (0.003)

Substitute sites 0.501∗∗∗ 0.562∗∗∗ 0.527∗∗∗

(0.140) (0.141) (0.141)

Class 2 0.617∗∗∗

(0.110)

Prob of class 2 0.691∗∗∗

(0.184)

Intercept 0.705∗∗ 0.501∗ 0.463∗

(0.219) (0.220) (0.230)
N 187 187 187

Log likelihood -661.97 -655.01 -653.58
AIC 1333.93 1305.40 1322.01
BIC 1350.09 1324.79 1341.40

Pseudo-R2 0.045 0.067 0.055

I: without endogeneity control.

II: controlling for endogeneity, dummy strategy.

III: controlling for endogeneity, posterior probability strategy.

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: Simultaneous estimation of on-site Poisson and probit specifications
via Bayesian Inference Approach

I II

On-site Poisson equation
Travel Cost -2.065 -2.819

[-2.828, -1.324] [-4.092, -1.445]
Biking skills 0.014 -0.686

[-0.115, 0.147] [-0.854, -0.524]
Income 0.00001 -0.009

[-0.005, 0.005] [-0.018, -0.001]
Substitute sites 0.500 0.653

[0.223, 0.774] [0.247, 1.092]
Class 2 4.838

[4.240, 5.433]
Intercept 0.706 1.469

[0.257, 1.135] [0.939, 1.992]

Probit equation
Class1

Bid -1.595
[-2.149, -1.101]

Intercept 0.554
[0.157, 0.972]

Share 0.84
Class2

Bid -1.689
[-4.179, -0.338]

Intercept 0.143
[-1.069, 1.159]

Share 0.16

Mean PSRF 1.002 1.002
DIC 1333.928 838.638

I: without endogeneity control.

II: simultaneous estimation.

95% credible interval in parenthesis
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