Results

Modeling Non-Consumptive Attributes in Choice Experiments

Klaus Moeltner

Virginia Tech

Johannes Reichl

Johannes Kepler University

Presented at the Environmental Economics Workshop, Appalachian State University, April 20-21, 2012.

Funded in part by the European Commission's Seventh Framework Programme (FP7).

1/46

CRNC = Choice-Relevant, Non-Consumptive Attributes

CRNC = Choice-Relevant, Non-Consumptive Attributes

 $U = f(\mathbf{x}, \mathbf{z}, \boldsymbol{\theta})$

CRNC = Choice-Relevant, Non-Consumptive Attributes

 $U = f(\mathbf{x}, \mathbf{z}, \boldsymbol{\theta})$

Common feature in choice experiments.

CRNC = Choice-Relevant, Non-Consumptive Attributes

 $U = f(\mathbf{x}, \mathbf{z}, \boldsymbol{\theta})$

Common feature in choice experiments.

Limited research / consensus on how to model them.

Motivation	Models	
000000 0000	0000 000000000000000000000000000000000	
Definition		

Can we draw a general *working distinction* between **x** and **z**?

Can we draw a general *working distinction* between **x** and **z**?

Should / could \boldsymbol{z} have nonzero marginal utility even in the absence of $\boldsymbol{x}?$

Can we draw a general *working distinction* between **x** and **z**?

Should / could z have *nonzero marginal utility* even in the absence of x?

Could z be related to unobserved heterogeneity?

Motivation	Models	
000000 0000	0000 000000000000000000000	
Definition		

Generalized choice situation G(X, d)

Generalized choice situation G(X, d)d =ancillary condition

Generalized choice situation G(X, d)d =ancillary condition

• exogenous feature of choice environment

Generalized choice situation G(X, d)d =ancillary condition

- exogenous feature of choice environment
- not relevant to social planner's policy evaluation

Generalized choice situation G(X, d)d =ancillary condition

- exogenous feature of choice environment
- not relevant to social planner's policy evaluation
- elements that change when choice is delegated

Definition

Generalized choice situation G(X, d)d =ancillary condition

- exogenous feature of choice environment
- not relevant to social planner's policy evaluation
- elements that change when choice is delegated
- BUT "can be analyst-specific"

Results

Pair (A, f) = Extended choice problem

Pair (A, f) = Extended choice problem f =frame


```
Pair (A, f) = Extended choice problem f = frame
```

Observable information that is *irrelevant in the rational assessment* of the alternatives


```
Pair (A, f) = Extended choice problem f = frame
```

Observable information that is *irrelevant in the rational assessment* of the alternatives

• orderings of choice options


```
Pair (A, f) = Extended choice problem f = frame
```

Observable information that is *irrelevant in the rational assessment* of the alternatives

イロト 不得 トイヨト イヨト 二日

5/46

- orderings of choice options
- labeling of "default alternative"


```
Pair (A, f) = Extended choice problem f = frame
```

Observable information that is *irrelevant in the rational assessment* of the alternatives

- orderings of choice options
- labeling of "default alternative"
- number of choice menus presented to individual

Potential candidates in CEs / NMV

• Presentation of information (text, visual, etc.)

- Presentation of information (text, visual, etc.)
- Wording of food labeling ("contains" / "does not contain")

- Presentation of information (text, visual, etc.)
- Wording of food labeling ("contains" / "does not contain")
- Payment vehicle (tax, utility bill, etc.)

- Presentation of information (text, visual, etc.)
- Wording of food labeling ("contains" / "does not contain")
- Payment vehicle (tax, utility bill, etc.)
- Policy process / implementation (NGO, Gov. agency, etc.)

- Presentation of information (text, visual, etc.)
- Wording of food labeling ("contains" / "does not contain")
- Payment vehicle (tax, utility bill, etc.)
- Policy process / implementation (NGO, Gov. agency, etc.)
- Economic spillovers (secondary benefits to others)

Motivation 00000●0 0000	Models 0000 0000000000000000000000000000000	Estimation 00	Results 0000000
Definition			

 $\mathbf{x} =$ characteristics of the commodity or environmental service that are:

• of primary interest to policy maker and / or

- of primary interest to policy maker and / or
- likely subject to change under proposed / considered policy

- of primary interest to policy maker and / or
- likely subject to change under proposed / considered policy
- "The stuff we want to value"

- of primary interest to policy maker and / or
- likely subject to change under proposed / considered policy
- "The stuff we want to value"

- of primary interest to policy maker and / or
- likely subject to change under proposed / considered policy
- "The stuff we want to value"
- $\mathbf{z} = \text{everything else that is:}$

- of primary interest to policy maker and / or
- likely subject to change under proposed / considered policy
- "The stuff we want to value"
- $\mathbf{z} = \text{everything else that is:}$
 - exogenous to respondent

- of primary interest to policy maker and / or
- likely subject to change under proposed / considered policy
- "The stuff we want to value"
- $\mathbf{z} = \text{everything else that is:}$
 - exogenous to respondent
 - potentially relevant for choice

- of primary interest to policy maker and / or
- likely subject to change under proposed / considered policy
- "The stuff we want to value"
- $\mathbf{z} = \text{everything else that is:}$
 - exogenous to respondent
 - potentially relevant for choice
 - observable to analyst

Motivation	Models	
000000 0000	0000 000000000000000000000000000000000	
Definition		

This implies:

<ロト <回 > < 注 > < 注 > < 注 > 注 の Q (~ 8/46) This implies:

• Definition of \mathbf{x}, \mathbf{z} is context-specific
This implies:

- Definition of \mathbf{x}, \mathbf{z} is context-specific
- \boldsymbol{z} can, in theory, affect utility irrespective of \boldsymbol{x}

This implies:

- Definition of \mathbf{x}, \mathbf{z} is context-specific
- \boldsymbol{z} can, in theory, affect utility irrespective of \boldsymbol{x}
- maximum econometric flexibility

Motivation	Models	
0000000 ●000	0000 000000000000000000000000000000000	
Examples		

Bateman et al., 2009

x = share of landscape coverage (flooded, preserve, agriculture)

Motivation	Models	
000000 •000	0000 000000000000000000000000000000000	
Examples		

Bateman et al., 2009

- **x** = share of landscape coverage (flooded, preserve, agriculture)
- z = Presentation of information (text, virtual reality, or both)

Bateman et al., 2009

- **x** = share of landscape coverage (flooded, preserve, agriculture)
- z = Presentation of information (text, virtual reality, or both)

110

I.J. Bateman et al. / Journal of Environmental Economics and Management 58 (2009) 106-118

Fig. 1. VR visualisations of the status quo (upper row) and various alternative land use scenarios (lower row) from different viewing points.

N otivation	Models	
000000	0000 0000000000000000000000000000000000	
xamples		

Johnston & Duke, 2009

 \mathbf{x} = features of preserved farm land (size, current use, access)

Motivation	Models	Estimation	Results
0000000 0000	0000		0000000
Examples			

Johnston & Duke, 2009

- \mathbf{x} = features of preserved farm land (size, current use, access)
- z = Conservation implementation (primary agency, type of contract)

Estimation 00

Johnston & Duke, 2009

- $\mathbf{x} =$ features of preserved farm land (size, current use, access)
- **z** = Conservation implementation (primary agency, type of contract)

Attribute	Levels
Acres (4 levels)	1. 20 2. 60 3. 100 4. 200
Land type (5 levels)	 Active farmland Active farmland Nursery Food crop Dairy or livestock Fermatic (currently idle)
Policy technique and implementing agency (5 levels)	 Forest Preservation contracts By state By land trusts using block grants Outright purchase By state By state
Public access (3 levels)	 Conservation zoning No access allowed Access for walking and biking
Development risk (3 levels)	 Development likely in less than 10 years if not preserved Development likely in 10–30 years if not preserved Development NOT likely within
Cost (6 levels)	the next 30 years 1. \$5 2. \$15 3. \$30 4. \$50 5. \$100 6. execc
	6. \$200

Table 2.	Attributes	and I	Levels for	Choice	Experiment	Design
----------	------------	-------	------------	--------	------------	--------

10/46

Motivation ○○○○○○○ ○○●○	Models 0000 0000000000000000000000000000000	Estimation 00	Results 0000000
Examples			

Hu et al., 2005

 $\mathbf{x} =$ flour type, brand (local, national), GMO content

Hu et al., 2005

- $\mathbf{x}=$ flour type, brand (local, national), GMO content
- z = Labeling of GMO ("includes", "does not include")

Hu et al., 2005

 $\mathbf{x} =$ flour type, brand (local, national), GMO content $\mathbf{z} =$ Labeling of GMO ("includes", "does not include")

	Level 1	Level 2	Level 3	Level 4
Brand name	Store brand	National brand	_	_
Type of flour	White	Partial (60%) whole wheat	Whole wheat (100%)	Multigrain
Price (CND)	\$0.99	\$1.49	\$2.49	\$3.49
GM or not	GM ingredients present	GM ingredients absent	Not specified (as in the mixed labelling scenario)	

Growing interest in correct model specification for CEs

Growing interest in correct model specification for CEs

• Balcombe et al. (2009): Different coefficient distributions in ML models

Growing interest in correct model specification for CEs

- Balcombe et al. (2009): Different coefficient distributions in ML models
- Fiebig et al. (2010): Error scale vs. coefficient heterogeneity

Growing interest in correct model specification for CEs

- Balcombe et al. (2009): Different coefficient distributions in ML models
- Fiebig et al. (2010): Error scale vs. coefficient heterogeneity
- Torres et al. (2011): Different functional forms for IUF

Estimation 00

Basic Setup

$$U_{i0}^* = \mathbf{x}_{i0}' \boldsymbol{\beta}_i^* + \gamma_i^* \boldsymbol{m}_i + \epsilon_{i0}^*$$
$$U_{i1t}^* = \mathbf{x}_{i1t}' \boldsymbol{\beta}_i^* + \gamma_i^* (\boldsymbol{m}_i + \boldsymbol{P}_i) + \epsilon_{i1t}^*$$

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > 13 / 46

Model in preference-space

Basic Setup

$$U_{it}^{*} = U_{i1t}^{*} - U_{i0}^{*} = \mathbf{x}_{it}^{\prime} \beta_{i}^{*} + \gamma_{i}^{*} P_{i} + \epsilon_{it}^{*} \quad \text{where}$$

$$\mathbf{x}_{it} = (\mathbf{x}_{i1t} - \mathbf{x}_{i0}) \text{ and } \epsilon_{it}^{*} = (\epsilon_{i1t}^{*} - \epsilon_{i0}^{*})$$

$$\epsilon_{it}^{*} \sim n \left(0, \sigma^{2}\right)$$

	Models	
0000000 0000	0000 00000000000000000000000000000000	
Deale Cature		

イロト イロト イヨト イヨト 二日

15 / 46

Model in WTP-space

$$U_{it} = \frac{U_{i1t}^*}{\gamma_i^*} = \mathbf{x}_{it}' \boldsymbol{\beta}_i + P_i + \epsilon_{it} \quad \text{where}$$

$$\boldsymbol{\beta}_i = \frac{\boldsymbol{\beta}_i^*}{\gamma_i^*} \text{ and } \epsilon_{it} = \frac{\epsilon_{it}^*}{\gamma_i^*} \quad \text{with}$$

$$\epsilon_{it} \sim n \left(0, \sigma_i^2\right) \text{ and } \sigma_i^2 = \frac{\sigma^2}{\gamma_i^{*2}}$$

Advantages of WTP-space

Basic Setup

• Direct priors for attribute-specific WTP ("implicit prices")

Estimation 00

Advantages of WTP-space

- Direct priors for attribute-specific WTP ("implicit prices")
- Gain in accuracy and robustness in hierarchical models (Sonnier et al., 2007)

Advantages of WTP-space

- Direct priors for attribute-specific WTP ("implicit prices")
- Gain in accuracy and robustness in hierarchical models (Sonnier et al., 2007)
- More intuitive interpretation of individual heterogeneity

iviotivation	Nidels	Estimation	Results
0000000 0000	0000 •0000000000000000000000		
Modeling CRNCs			

Modeling CRNCs

• Assume unobserved heterogeneity in preferences throughout

- Assume unobserved heterogeneity in preferences throughout
- **z**_i is respondent-specific (invariant w/in i)

Modeling CRNCs

• Assume unobserved heterogeneity in preferences throughout

イロト 不得下 イヨト イヨト

3

17 / 46

- **z**_{*i*} is respondent-specific (invariant w/in *i*)
- Must be linked to **x**_{it} (else drops out)

Motivation 0000000 0000	Models ○○○○ ○●○○○○○○○○○○○○○○○○○○○	Estimation 00	Results 0000000
Modeling CRNCs			

• \mathbf{z}_i has no effect on $\boldsymbol{\beta}_i$ ("S0")

	Models		
0000000 0000	0000 0 0 000000000000000000000000000000	00	
Modeling CRNCs			

- \mathbf{z}_i has no effect on β_i ("S0")
- \mathbf{z}_i only affects expectation of $\boldsymbol{\beta}_i$

	Models	
0000000 0000	0000 0●000000000000000000000	
Modeling CRNCs		

- \mathbf{z}_i has no effect on $\boldsymbol{\beta}_i$ ("S0")
- \mathbf{z}_i only affects expectation of $\boldsymbol{\beta}_i$
 - Via shift ("S1a")

	Models		
000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

- \mathbf{z}_i has no effect on $\boldsymbol{\beta}_i$ ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")

Model Overview

- \mathbf{z}_i has no effect on $\boldsymbol{\beta}_i$ ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")
- \mathbf{z}_i only affects variance of $\boldsymbol{\beta}_i$

- z_i has no effect on β_i ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")
- \mathbf{z}_i only affects variance of $\boldsymbol{\beta}_i$
 - Via scaling

- z_i has no effect on β_i ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")
- \mathbf{z}_i only affects variance of $\boldsymbol{\beta}_i$
 - Via scaling
 - Via increment

- z_i has no effect on β_i ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")
- \mathbf{z}_i only affects variance of $\boldsymbol{\beta}_i$
 - Via scaling
 - Via increment
- \mathbf{z}_i affects both expectation and variance of $\boldsymbol{\beta}_i$

- z_i has no effect on β_i ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")
- \mathbf{z}_i only affects variance of $\boldsymbol{\beta}_i$
 - Via scaling
 - Via increment
- \mathbf{z}_i affects both expectation and variance of β_i
 - Via shift / scaling

- z_i has no effect on β_i ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")
- \mathbf{z}_i only affects variance of $\boldsymbol{\beta}_i$
 - Via scaling
 - Via increment
- \mathbf{z}_i affects both expectation and variance of β_i
 - Via shift / scaling
 - Via increment / scaling

- z_i has no effect on β_i ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")
- \mathbf{z}_i only affects variance of $\boldsymbol{\beta}_i$
 - Via scaling
 - Via increment
- \mathbf{z}_i affects both expectation and variance of β_i
 - Via shift / scaling
 - Via increment / scaling
 - Via shift / increment

- z_i has no effect on β_i ("S0")
- z_i only affects expectation of β_i
 - Via shift ("S1a")
 - Via increment ("S1b")
- \mathbf{z}_i only affects variance of $\boldsymbol{\beta}_i$
 - Via scaling
 - Via increment
- \mathbf{z}_i affects both expectation and variance of β_i
 - Via shift / scaling
 - Via increment / scaling
 - Via shift / increment
 - Via increment / increment
| | Models | | |
|-----------------|---|----|---------|
| 0000000
0000 | 0000
00 0 00000000000000000000000000000 | 00 | 0000000 |
| Modeling CRNCs | | | |
| | | | |

Model S0

 $m{eta}_i = m{eta} + m{\delta}_i \quad m{\delta}_i \sim n(m{0}, m{\Sigma})$

	Models	
000000 0000	0000 00000000000000000000000	
Modeling CRNCs		

Model S0

$$eta_i = eta + \delta_i \quad \delta_i \sim n(\mathbf{0}, \mathbf{\Sigma})$$

$$E (\beta_i) = \beta$$
$$V (\beta_i) = \Sigma$$
$$E (\beta_{i,k}) = \beta_k$$
$$V (\beta_{i,k}) = \Sigma_{kk}$$

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 19 / 46

	Models	
0000000 0000	0000 00●000000000000000000000000000000	
Modeling CRNCs		

イロト イロト イヨト イヨト 三日

19 / 46

Model S0

$$\beta_{i} = \beta + \delta_{i} \quad \delta_{i} \sim n(\mathbf{0}, \mathbf{\Sigma})$$
$$E(\beta_{i}) = \beta$$
$$V(\beta_{i}) = \mathbf{\Sigma}$$
$$E(\beta_{i,k}) = \beta_{k}$$
$$V(\beta_{i,k}) = \Sigma_{kk}$$

Coefficient / expectation ratio

$$\frac{\beta_{i,k}}{E\left(\beta_{i,k}\right)} = \frac{\beta_k + \delta_{i,k}}{\beta_k} = 1 + \frac{\delta_{i,k}}{\beta_k}$$

	Models		
0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

Model S1a

$$\boldsymbol{\beta}_{i} = \boldsymbol{\beta} + \boldsymbol{A}\boldsymbol{z}_{i} + \boldsymbol{\delta}_{i}, \quad \text{where}$$
$$\boldsymbol{A} = \begin{cases} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1l} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{k1} & \alpha_{k2} & \dots & \alpha_{kl} \end{cases}$$

Model S1a

$$\boldsymbol{\beta}_{i} = \boldsymbol{\beta} + \mathbf{A}\mathbf{z}_{i} + \boldsymbol{\delta}_{i}, \quad \text{where}$$
$$\mathbf{A} = \begin{cases} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1l} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{k1} & \alpha_{k2} & \dots & \alpha_{kl} \end{cases}$$

$$E (\beta_i) = \beta + \mathbf{A} \mathbf{z}_i$$
$$V (\beta_i) = \mathbf{\Sigma}$$
$$E (\beta_{i,k}) = \beta_k + \mathbf{z}'_i \alpha_k$$
$$V (\beta_{i,k}) = \Sigma_{kk}$$

Motivation	Models	Estimation	Results
0000000 0000	0000 000000000000000000000000000000000		
Modeling CRNCs			

Model S1a, cont'd

		Models		
	0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs	Modeling CRNCs			

イロト イロト イヨト イヨト 三日

21/46

Model S1a, cont'd

$$\beta_{i,k}|(z_{i,l}=1) - \beta_{i,k}|(z_{i,l}=0) = \beta_k + \alpha_{kl} + \delta_{i,k} - (\beta_k + \delta_{i,k}) = \alpha_{kl}, \forall i$$

	Models	
0000000 0000	०००० ००००●०००००००००००००	
Modeling CRNCs		

Model S1a, cont'd

Differential effect of binary CRNC

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) = \beta_k + \alpha_{kl} + \delta_{i,k} - (\beta_k + \delta_{i,k}) = \alpha_{kl}, \forall i$$

Coefficient / expectation ratios

$$\frac{\beta_{i,k}|(z_{i,l}=0)}{E\left(\beta_{i,k}|(z_{i,l}=0)\right)} = \frac{\beta_k + \delta_{i,k}}{\beta_k} = 1 + \frac{\delta_{i,k}}{\beta_k}$$

$$\frac{\beta_{i,k}|(z_{i,l}=1)}{E\left(\beta_{i,k}|(z_{i,k}=1)\right)} = \frac{\beta_k + \alpha_{kl} + \delta_{i,k}}{\beta_k + \alpha_{kl}} = 1 + \frac{\delta_{i,k}}{\beta_k + \alpha_{kl}}$$
(1)

	Models	
000000 0000	0000 000000000000000000000000000000000	
Modeling CRNCs		

Model S1b

$$\beta_{i} = (\mathbf{I} + \mathbf{\Lambda})\beta + \delta_{i}, \text{ where}$$
$$\mathbf{\Lambda} = \begin{cases} \mathbf{z}_{i}^{\prime}\alpha_{1} & 0 & \dots & 0\\ 0 & \mathbf{z}_{i}^{\prime}\alpha_{2} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \mathbf{z}_{i}^{\prime}\alpha_{k} \end{cases},$$
$$\boldsymbol{\alpha}_{k} = \{\alpha_{k1} \quad \alpha_{k2} \quad \dots \quad \alpha_{kl}\}^{\prime},$$

	Models	
000000 0000	0000 00000000000000000000000	
Modeling CRNCs		

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わえぐ

22 / 46

Model S1b

$$\beta_{i} = (\mathbf{I} + \mathbf{\Lambda}) \beta + \delta_{i}, \text{ where}$$
$$\mathbf{\Lambda} = \begin{cases} \mathbf{z}_{i}^{\prime} \alpha_{1} & 0 & \dots & 0\\ 0 & \mathbf{z}_{i}^{\prime} \alpha_{2} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \mathbf{z}_{i}^{\prime} \alpha_{k} \end{cases} \\ \mathbf{\alpha}_{k} = \{ \alpha_{k1} \quad \alpha_{k2} \quad \dots \quad \alpha_{kl} \}^{\prime}, \end{cases}$$

$$E (\beta_i) = (\mathbf{I} + \mathbf{\Lambda}) \beta$$
$$V (\beta_i) = \mathbf{\Sigma}$$
$$E (\beta_{i,k}) = (1 + \mathbf{z}'_i \alpha_k) \beta_k$$
$$V (\beta_{i,k}) = \Sigma_{kk}$$

	Models		
0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

イロト イロト イヨト イヨト 三日

23 / 46

Model S1b, cont'd

$$\beta_{i,k}|(z_{i,l}=1) - \beta_{i,k}|(z_{i,l}=0) = (1 + \alpha_{kl})\beta_k + \delta_{i,k} - (\beta_k + \delta_{i,k}) = \alpha_{kl}\beta_k, \forall i$$

	Models	
0000000 0000	०००० ००००००●०००००००००००	
Modeling CRNCs		

Model S1b, cont'd

Differential effect of binary CRNC

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) =$$

(1 + α_{kl}) $\beta_k + \delta_{i,k} - (\beta_k + \delta_{i,k}) = \alpha_{kl} \beta_k, \forall i$

Coefficient / expectation ratios

$$\frac{\beta_{i,k}|z_{i,l} = 0}{E\left(\beta_{i,k}|z_{i,l} = 0\right)} = \frac{\beta_k + \delta_{i,k}}{\beta_k} = 1 + \frac{\delta_{i,k}}{\beta_k}$$
$$\frac{\beta_{i,k}|z_{i,l} = 1}{E\left(\beta_{i,k}|z_{i,k} = 1\right)} = \frac{(1 + \alpha_{kl})\beta_k + \delta_{i,k}}{(1 + \alpha_{kl})\beta_k} = 1 + \frac{\delta_{i,k}}{(1 + \alpha_{kl})\beta_k}$$

Model S2a

$$\begin{split} \boldsymbol{\beta}_{i} &= \boldsymbol{\beta} + \boldsymbol{\Gamma}\boldsymbol{\delta}_{i}, \quad \text{where} \\ \boldsymbol{\Gamma} &= \begin{cases} \boldsymbol{z}_{i}^{\prime}\boldsymbol{\gamma}_{1} \quad \boldsymbol{0} \quad \dots \quad \boldsymbol{0} \\ \boldsymbol{0} \quad \boldsymbol{z}_{i}^{\prime}\boldsymbol{\gamma}_{2} \quad \dots \quad \boldsymbol{0} \\ \vdots \quad \vdots \quad \ddots \quad \vdots \\ \boldsymbol{0} \quad \boldsymbol{0} \quad \dots \quad \boldsymbol{z}_{i}^{\prime}\boldsymbol{\gamma}_{k} \end{cases} \\ \boldsymbol{\gamma}_{k} &= \left\{ \boldsymbol{\gamma}_{k1} \quad \boldsymbol{\gamma}_{k2} \quad \dots \quad \boldsymbol{\gamma}_{kl} \right\}^{\prime}, \end{split}$$

,

イロト イロト イヨト イヨト 三日

24 / 46

Model S2a

$$\begin{split} \boldsymbol{\beta}_{i} &= \boldsymbol{\beta} + \boldsymbol{\Gamma}\boldsymbol{\delta}_{i}, \quad \text{where} \\ \boldsymbol{\Gamma} &= \begin{cases} \boldsymbol{z}_{i}^{\prime}\boldsymbol{\gamma}_{1} & 0 & \dots & 0 \\ 0 & \boldsymbol{z}_{i}^{\prime}\boldsymbol{\gamma}_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \boldsymbol{z}_{i}^{\prime}\boldsymbol{\gamma}_{k} \end{cases} \\ \boldsymbol{\gamma}_{k} &= \left\{ \boldsymbol{\gamma}_{k1} \quad \boldsymbol{\gamma}_{k2} \quad \dots \quad \boldsymbol{\gamma}_{kl} \right\}^{\prime}, \end{split}$$

$$E (\beta_i) = \beta$$
$$V (\beta_i) = \Gamma \Sigma \Gamma'$$
$$E (\beta_{i,k}) = \beta_k$$
$$V (\beta_{i,k}) = (\mathbf{z}'_i \boldsymbol{\gamma}_k)^2 \Sigma_{kk}$$

	Models		
0000000 0000	0000 000000000000000000	00	
Modeling CRNCs			

Model S2a, cont'd

$$\beta_{i,k}|(z_{i,l}=1) - \beta_{i,k}|(z_{i,l}=0) = \beta_k + \gamma_{kl}\delta_{i,k} - \beta_k = \gamma_{kl}\delta_{i,k}$$

	Models	
000000 0000	0000 00000000000000000000000	
Modeling CRNCs		

Model S2a, cont'd

Differential effect of binary CRNC

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) = \beta_k + \gamma_{kl} \delta_{i,k} - \beta_k = \gamma_{kl} \delta_{i,k}$$

Coefficient / expectation ratios

$$\frac{\beta_{i,k}|z_{i,l}=0}{E\left(\beta_{i,k}|z_{i,l}=0\right)} = \frac{\beta_k}{\beta_k} = 1$$
$$\frac{\beta_{i,k}|z_{i,l}=1}{E\left(\beta_{i,k}|z_{i,k}=1\right)} = 1 + \frac{\gamma_{kl}\delta_{i,k}}{\beta_k}$$

	Models		
0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

Model S2b

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + (\mathbf{I} + \mathbf{\Gamma}) \, \boldsymbol{\delta}_i$$

	Models		
0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

Model S2b

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + (\mathbf{I} + \mathbf{\Gamma}) \, \boldsymbol{\delta}_i$$

$$E (\beta_i) = \beta$$
$$V (\beta_i) = (\mathbf{I} + \mathbf{\Gamma}) \mathbf{\Sigma} (\mathbf{I} + \mathbf{\Gamma})'$$
$$E (\beta_{i,k}) = \beta_k$$
$$V (\beta_{i,k}) = (1 + \mathbf{z}'_i \boldsymbol{\gamma}_k)^2 \boldsymbol{\Sigma}_{kk}$$

	Models	
0000000 0000	0000 000000000000000000000	
Modeling CRNCs		

Model S2b, cont'd

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) = \beta_k + (1 + \gamma_{kl}) \delta_{i,k} - \beta_k = (1 + \gamma_{kl}) \delta_{i,k}$$

	Models	
000000 0000	0000 0000000000000000000000	
Modeling CRNCs		

Model S2b, cont'd

Differential effect of binary CRNC

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) = \\ \beta_k + (1 + \gamma_{kl}) \, \delta_{i,k} - \beta_k = (1 + \gamma_{kl}) \, \delta_{i,k}$$

Coefficient / expectation ratios

$$\frac{\beta_{i,k}|z_{i,l} = 0}{E\left(\beta_{i,k}|z_{i,l} = 0\right)} = \frac{\beta_k}{\beta_k} = 1$$
$$\frac{\beta_{i,k}|z_{i,l} = 1}{E\left(\beta_{i,k}|z_{i,k} = 1\right)} = 1 + \frac{(1 + \gamma_{kl})\,\delta_{i,k}}{\beta_k}$$

	Models		
0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

Model S3aa

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + \mathbf{A}\mathbf{z}_i + \mathbf{\Gamma}\boldsymbol{\delta}_i$$

	Models	
0000000	0000 000000000000000000000	
Modeling CRNCs		

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わえぐ

28 / 46

Model S3aa

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + \mathbf{A}\mathbf{z}_i + \mathbf{\Gamma}\boldsymbol{\delta}_i$$

$$E (\beta_i) = \beta + \mathbf{A}\mathbf{z}_i$$
$$V (\beta_i) = \mathbf{\Gamma}\mathbf{\Sigma}\mathbf{\Gamma}'$$
$$E (\beta_{i,k}) = \beta_k + \mathbf{z}'_i \boldsymbol{\alpha}_k$$
$$V (\beta_{i,k}) = (\mathbf{z}'_i \boldsymbol{\gamma}_k)^2 \boldsymbol{\Sigma}_{kk}$$

	Models		
0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

イロト イロト イヨト イヨト 三日

29 / 46

Model S3aa, cont'd

$$\beta_{i,k}|(z_{i,l}=1) - \beta_{i,k}|(z_{i,l}=0) = \\ \beta_k + \alpha_{kl} + \gamma_{kl}\delta_{i,k} - \beta_k = \alpha_{kl} + \gamma_{kl}\delta_{i,k}$$

(日) (四) (三) (三) (三)

29 / 46

Model S3aa, cont'd

Differential effect of binary CRNC

$$\beta_{i,k}|(z_{i,l}=1) - \beta_{i,k}|(z_{i,l}=0) = \beta_k + \alpha_{kl} + \gamma_{kl}\delta_{i,k} - \beta_k = \alpha_{kl} + \gamma_{kl}\delta_{i,k}$$

Coefficient / expectation ratios

$$\begin{aligned} \frac{\beta_{i,k}|z_{i,l}=0}{E\left(\beta_{i,k}|z_{i,l}=0\right)} &= \frac{\beta_k}{\beta_k} = 1\\ \frac{\beta_{i,k}|z_{i,l}=1}{E\left(\beta_{i,k}|z_{i,k}=1\right)} &= 1 + \frac{\gamma_{kl}\delta_{i,k}}{\beta_k + \alpha_{kl}} \end{aligned}$$

	Models		
0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

Model S3ba

$$\boldsymbol{\beta}_i = (\mathbf{I} + \mathbf{\Lambda}) \boldsymbol{\beta} + \mathbf{\Gamma} \boldsymbol{\delta}_i$$

<ロト < 部 > < 注 > < 注 > 注 30 / 46

	Models		
0000000 0000	0000 000000000000000000000000000000000	00	
Modeling CRNCs			

▲□ → ▲圖 → ▲ 臣 → ▲ 臣 → 一 臣 → の Q ()

30 / 46

Model S3ba

$$\boldsymbol{\beta}_i = (\mathbf{I} + \mathbf{\Lambda}) \boldsymbol{\beta} + \mathbf{\Gamma} \boldsymbol{\delta}_i$$

$$E (\beta_i) = (\mathbf{I} + \mathbf{\Lambda}) \beta$$
$$V (\beta_i) = \mathbf{\Gamma} \mathbf{\Sigma} \mathbf{\Gamma}'$$
$$E (\beta_{i,k}) = (1 + \mathbf{z}'_i \boldsymbol{\alpha}_k) \beta_k$$
$$V (\beta_{i,k}) = (\mathbf{z}'_i \boldsymbol{\gamma}_k)^2 \boldsymbol{\Sigma}_{kk}$$

	Models	
0000000 0000	0000 000000000000000000000000000000000	
Modeling CRNCs		

Model S3ba, cont'd

$$\beta_{i,k}|(z_{i,l}=1) - \beta_{i,k}|(z_{i,l}=0) = (1 + \alpha_{kl})\beta_k + \gamma_{kl}\delta_{i,k} - \beta_k = \alpha_{kl}\beta_k + \gamma_{kl}\delta_{i,k}$$

31 / 46

Model S3ba, cont'd

Differential effect of binary CRNC

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) =$$

(1 + α_{kl}) β_k + $\gamma_{kl} \delta_{i,k} - \beta_k = \alpha_{kl} \beta_k + \gamma_{kl} \delta_{i,k}$

Coefficient / expectation ratios

$$\frac{\beta_{i,k}|z_{i,l} = 0}{E\left(\beta_{i,k}|z_{i,l} = 0\right)} = \frac{\beta_k}{\beta_k} = 1$$
$$\frac{\beta_{i,k}|z_{i,l} = 1}{E\left(\beta_{i,k}|z_{i,k} = 1\right)} = 1 + \frac{\gamma_{kl}\delta_{i,k}}{\left(1 + \alpha_{kl}\right)\beta_k}$$

	Models		
0000000 0000	0000 000000000000000000000000000000000	00 000	
Modeling CRNCs			

Model S3ab

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + \mathbf{A}\mathbf{z}_i + (\mathbf{I} + \mathbf{\Gamma})\,\boldsymbol{\delta}_i$$

	Models		
0000000 0000	0000 0000000000000000000000000000000000	00 000	
Modeling CRNCs			

▲□ → ▲圖 → ▲ 臣 → ▲ 臣 → 一 臣 → の Q ()

32 / 46

Model S3ab

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + \mathbf{A}\mathbf{z}_i + (\mathbf{I} + \mathbf{\Gamma})\,\boldsymbol{\delta}_i$$

$$E (\beta_i) = \beta + \mathbf{A} \mathbf{z}_i$$

$$V (\beta_i) = (\mathbf{I} + \mathbf{\Gamma}) \mathbf{\Sigma} (\mathbf{I} + \mathbf{\Gamma})'$$

$$E (\beta_{i,k}) = \beta_k + \mathbf{z}'_i \alpha_k$$

$$V (\beta_{i,k}) = (1 + \mathbf{z}'_i \gamma_k)^2 \mathbf{\Sigma}_{kk}$$

	Models	
000000 0000	0000 000000000000000000000000000000000	
Modeling CRNCs		

イロト イロト イヨト イヨト 三日

33 / 46

Model S3ab, cont'd

$$\begin{aligned} \beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) = \\ \beta_k + \alpha_{kl} + (1 + \gamma_{kl}) \delta_{ik} - (\beta_k + \delta_{i,k}) = \alpha_{kl} + \gamma_{kl} \delta_{i,k} \end{aligned}$$

	Models	
000000 0000	0000 000000000000000000000000000000000	
Modeling CRNCs		

Model S3ab, cont'd

Differential effect of binary CRNC

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) = \beta_k + \alpha_{kl} + (1 + \gamma_{kl}) \delta_{ik} - (\beta_k + \delta_{i,k}) = \alpha_{kl} + \gamma_{kl} \delta_{i,k}$$

Coefficient / expectation ratios

$$\frac{\beta_{i,k} | (z_{i,l} = 0)}{E(\beta_{i,k} | (z_{i,l} = 0))} = \frac{\beta_k + \delta_{i,k}}{\beta_k} = 1 + \frac{\delta_{ik}}{\beta_k}$$
$$\frac{\beta_{i,k} | (z_{i,l} = 1)}{E(\beta_{i,k} | (z_{i,k} = 1))} = \frac{(\beta_k + \alpha_{kl}) + (1 + \gamma_{kl}) \delta_{ik}}{\beta_k + \alpha_{kl}} = 1 + \frac{(1 + \gamma_{kl}) \delta_{ik}}{\beta_k + \alpha_{kl}}$$

・ロ ・ ・ (部 ・ ・ 言 ・ く 言 ・ こ ・ う へ (や 33 / 46

	Models		
0000000 0000	0000 0000000000000000000000000000000000	00 0●00	
Modeling CRNCs			

Model S3bb

$$\boldsymbol{\beta}_i = (\mathbf{I} + \mathbf{\Lambda}) \boldsymbol{\beta} + (\mathbf{I} + \mathbf{\Gamma}) \boldsymbol{\delta}_i$$

	Models		
0000000 0000	0000 0000000000000000000000000000000000	00 0000	
Modeling CRNCs			

Model S3bb

$$\boldsymbol{eta}_i = \left(\mathbf{I} + \mathbf{\Lambda}\right) \boldsymbol{eta} + \left(\mathbf{I} + \mathbf{\Gamma}\right) \boldsymbol{\delta}_i$$

$$E (\beta_i) = (\mathbf{I} + \mathbf{\Lambda}) \beta$$
$$V (\beta_i) = (\mathbf{I} + \mathbf{\Gamma}) \mathbf{\Sigma} (\mathbf{I} + \mathbf{\Gamma})'$$
$$E (\beta_{i,k}) = (1 + \mathbf{z}'_i \alpha_k) \beta_k$$
$$V (\beta_{i,k}) = (1 + \mathbf{z}'_i \gamma_k)^2 \Sigma_{kk}$$

	Models	
000000 0000	0000 00000000000000000000	
Modeling CRNCs		

Model S3bb, cont'd

Differential effect of binary CRNC

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) = (1 + \alpha_{kl}) \beta_k + (1 + \gamma_{kl}) \delta_{ik} - (\beta_k + \delta_{i,k}) = \alpha_{kl} \beta_k + \gamma_{kl} \delta_{i,k}$$

イロト イロト イヨト イヨト 三日

35 / 46

	Models	
000000 0000	0000 00000000000000000000	
Modeling CRNCs		

Model S3bb, cont'd

Differential effect of binary CRNC

$$\beta_{i,k} | (z_{i,l} = 1) - \beta_{i,k} | (z_{i,l} = 0) = (1 + \alpha_{kl}) \beta_k + (1 + \gamma_{kl}) \delta_{ik} - (\beta_k + \delta_{i,k}) = \alpha_{kl} \beta_k + \gamma_{kl} \delta_{i,k}$$

Coefficient / expectation ratios

$$\frac{\beta_{i,k} | (z_{i,l} = 0)}{E (\beta_{i,k} | (z_{i,l} = 0))} = \frac{\beta_k + \delta_{i,k}}{\beta_k} = 1 + \frac{\delta_{ik}}{\beta_k}$$
$$\frac{\beta_{i,k} | (z_{i,l} = 1)}{E (\beta_{i,k} | (z_{i,k} = 1))} = \frac{(1 + \alpha_{kl}) \beta_k + (1 + \gamma_{kl}) \delta_{ik}}{(1 + \alpha_{kl}) \beta_k} = 1 + \frac{(1 + \gamma_{kl}) \delta_{ik}}{(1 + \alpha_{kl}) \beta_k}$$
	Models	Estimation	
0000000 0000	0000 000000000000000000000	•0	
Estimation			

Hierarchical structure of model:

Hierarchical structure of model:

$$\begin{split} \boldsymbol{\beta}_{i} &\sim n\left(f\left(\boldsymbol{\beta}, \mathbf{A}, \mathbf{z}_{i}\right), g\left(\boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \mathbf{z}_{i}\right)\right)\\ \sigma_{i}^{2} &\sim ig\left(\nu_{0}, \tau\right)\\ \boldsymbol{\beta} &\sim n\left(\boldsymbol{\mu}_{\boldsymbol{\beta}, 0}, \boldsymbol{V}_{\boldsymbol{\beta}, 0}\right)\\ \mathbf{A} &\sim n\left(\boldsymbol{\mu}_{\mathbf{A}, 0}, \boldsymbol{V}_{\mathbf{A}, 0}\right)\\ \boldsymbol{\Gamma} &\sim n\left(\boldsymbol{\mu}_{\mathbf{\Gamma}, 0}, \boldsymbol{V}_{\mathbf{\Gamma}, 0}\right)\\ \tau &\sim gam\left(\eta_{0}, \psi_{0}\right) \end{split}$$

Motivation 0000000 0000	Models 0000 0000000000000000000000000000000	Estimation ○●	Results 0000000
Estimation			

Joint posterior distribution (example models S3):

Joint posterior distribution (example models S3):

$$p\left(\boldsymbol{\beta}, \boldsymbol{\Sigma}, \boldsymbol{A}, \boldsymbol{\Gamma}, \tau, \left\{\boldsymbol{\beta}_{i}\right\}, \left\{\sigma_{i}^{2}\right\}, \boldsymbol{U}|\boldsymbol{y}, \boldsymbol{X}, \boldsymbol{Z}\right) \propto \\ p\left(\boldsymbol{\beta}|\boldsymbol{\Sigma}\right) p\left(\boldsymbol{\Sigma}\right) p\left(\boldsymbol{A}\right) p\left(\boldsymbol{\Gamma}\right) p\left(\tau\right) * \\ p\left(\left\{\boldsymbol{\beta}_{i}\right\}|\boldsymbol{\beta}, \boldsymbol{\Sigma}, \boldsymbol{A}, \boldsymbol{\Gamma}, \boldsymbol{Z}\right) p\left(\left\{\sigma_{i}^{2}\right\}|\tau\right) * \\ p\left(\boldsymbol{U}|\left\{\boldsymbol{\beta}_{i}\right\}, \left\{\sigma_{i}^{2}\right\}, \boldsymbol{X}\right) p\left(\boldsymbol{y}|\boldsymbol{U}\right)$$

Joint posterior distribution (example models S3):

$$p\left(\boldsymbol{\beta}, \boldsymbol{\Sigma}, \boldsymbol{A}, \boldsymbol{\Gamma}, \tau, \left\{\boldsymbol{\beta}_{i}\right\}, \left\{\sigma_{i}^{2}\right\}, \boldsymbol{U}|\boldsymbol{y}, \boldsymbol{X}, \boldsymbol{Z}\right) \propto p\left(\boldsymbol{\beta}|\boldsymbol{\Sigma}\right) p\left(\boldsymbol{\Sigma}\right) p\left(\boldsymbol{A}\right) p\left(\boldsymbol{\Gamma}\right) p\left(\tau\right) * p\left(\left\{\boldsymbol{\beta}_{i}\right\}|\boldsymbol{\beta}, \boldsymbol{\Sigma}, \boldsymbol{A}, \boldsymbol{\Gamma}, \boldsymbol{Z}\right) p\left(\left\{\sigma_{i}^{2}\right\}|\tau\right) * p\left(\boldsymbol{U}|\left\{\boldsymbol{\beta}_{i}\right\}, \left\{\sigma_{i}^{2}\right\}, \boldsymbol{X}\right) p\left(\boldsymbol{y}|\boldsymbol{U}\right)$$

 \rightarrow Gibbs Sampler

Model Comparison			
Model MAD Hit Rate			
S0	0.263	0.757	
S1a	0.228	0.790	
S2b	0.220	0.783	
S3a S3b	0.216 0.226	0.786 0.778	

- ・ロト・西ト・モン・モー うべつ
 - 38 / 46

	Models	Results
0000000 0000	0000 000000000000000000000000000000000	000000
Results		

Model S0

Motivation 0000000 0000	Models 0000 0000000000000000000000000000000	Estimation 00	Results 0●0000C
Results			

Model S0

<ロ > < 合 > < き > < き > き き き き ぎ ぎ 39 / 46

Motivation 0000000 0000	Models 0000 0000000000000000000000000000000	Estimation 00	Results 00●0000
Results			

Model S1a

Model S1a

Model S1a

	Models	Results
0000000 0000	0000 000000000000000000000000000000000	0000000
Results		

Model S2b

Model S2b

S2b: Effect of CRNC on posterior distribution of WTP

	Models	Results
0000000 0000	0000 0000000000000000000000	0000000
Results		

Model S3ab

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 通 > < 42 / 46

Model S3ab

<ロト < 部ト < 国ト < 国ト < 国ト < 国 > 2 少 Q (~ 42 / 46

Activation 0000000 0000	Models 0000 0000000000000000000000000000000	Estimation 00	Results 0000●0
Results			

Model S3ab

S3ab: Effect of CRNC on posterior distribution of WTP

	Models	Results
0000000 0000	0000 0000000000000000000000000000000000	0000000
Results		

Model S3bb

Model S3bb

<ロト < 部ト < 国ト < 国ト < 国ト < 国 > 3 () 43/46

Model S3bb

Results

flooded

› < @ > < 코 > < 코 > 로 ∽ < ⊙ < ↔ 44 / 46

Results

reserve

45 / 46

	sults
Results	

• Compute marginal likelihood and posterior model probabilities

- Compute marginal likelihood and posterior model probabilities
- Examine restrictions on A, F

- Compute marginal likelihood and posterior model probabilities
- Examine restrictions on A, F
- Derive model-averaged results

- Compute marginal likelihood and posterior model probabilities
- Examine restrictions on A, F
- Derive model-averaged results
- Apply to other data / applications

- Compute marginal likelihood and posterior model probabilities
- Examine restrictions on A, F
- Derive model-averaged results
- Apply to other data / applications

- Compute marginal likelihood and posterior model probabilities
- Examine restrictions on $\boldsymbol{\mathsf{A}},\boldsymbol{\mathsf{\Gamma}}$
- Derive model-averaged results
- Apply to other data / applications

THANK YOU!